Today

e Systems with complex eigenvalue - example

e Systems with a repeated eigenvalue

e Summary of 2x2 systems with constant coefficients.




Complex eigenvalues (7.6) - example
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Complex eigenvalues (7.6) - example
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e Back to our earlier example: x' = < 4 1) X
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Repeated eigenvalues

¢ \What happens when you get two identical eigenvalues?
e WO cases:
1. The single eigenvalue has two distinct eigenvectors.

2. There is only one eigenvector (matrix is defective).

w2 = (0 )z
-7 \0 3
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Repeated eigenvalues

1. X = 5> 0
' 0 3

det(A—X)=(A-3)2=0
A=3

@mauw:(88>v:o

All vectors solve this so choose
any two independent vectors:

s o (1 1\
.X—1 3 X

det(A— M) =X —4X+4 =0
A =2

(A= X)v = (_11 _11> v =0

vV = < 11> <-- only 1 evector!

x(t) = Cre*'v + Core’ (w + tv)
(A —A)w =

v ()




Summary - homogeneous 2x2 systems

Steady states - constant solutions (set x’=0 and solve Ax=0).
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Summary - homogeneous 2x2 systems

Steady states - constant solutions (set x’=0 and solve Ax=0).

» For the system of equations X' = Ax, we always have x(¢) = 0 as
a steady state solution.

e If A is singular matrix with Av = 0 then x(t) = Vv is also a steady
state solution. In fact, X(t) = cV is a steady state for all ¢. It is also an
eigenvector associated with eigenvalue A = 0.

e If A is nonsingular then x(%) = O is the only steady state.
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Summary - homogeneous 2x2 systems

Steady states

e Steady states are classified by the nature of the surrounding solutions:

stable node unstable node saddle
- real negative evalues - real positive evalues - opposite sign evalues

stable spiral unstable spiral

- complex evalues, - complex evalues,
negative real part positive real part
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Summary - homogeneous 2x2 systems

e Quick way to determine how all other solutions behave:

(0}

a— A b
det(A—)\I)—det< . d—)\>

=(a—A)(d— ) —bc
=\ — (a+ d)\+ ad — bc
=\ —tr(A)\ + det(A)
=0



Summary - homogeneous 2x2 systems

e \When do the solutions spiral IN to the origin?

A2 —trAN+det A =0 @

[ trA < 0
| (trA)? < 4det A

[ trA >0
| (trA)® <4det A

trA <0, det(4) >0 |
(trA)? > 4det A (E) Explain, please.

trA > 0, det(A4) > 0
(trA)? > 4det A A

 trA+ /(trA)2 —4det A
B 2
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