### Today

- Systems with complex eigenvalues how to figure out rotation
- Systems with a repeated eigenvalue
- Summary of 2x2 systems with constant coefficients.

$$x' = x - 8y$$
  
 $y' = 8x + y$ 

(A) Solutions decay to zero exponentially.

(B) Solutions grow exponentially.

(C) Solutions rotate clockwise.

(D) Solutions rotate counterclockwise.

$$x' = x - 8y$$
  
 $y' = 8x + y$ 

(A) Solutions decay to zero exponentially.

(B) Solutions grow exponentially.

(C) Solutions rotate clockwise.

★(D) Solutions rotate counterclockwise.

$$x' = x - 8y$$

$$y' = 8x + y$$

$$\overline{x}' = \left(\frac{1 - 8}{8}\right) \overline{x}$$

$$x' = x - 8y$$

$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

$$x^{2} - tr A \lambda + det A = 0$$

$$x' = x - 8y$$

$$y' = 8x + y$$

$$\overline{x}' = \left(\frac{1 - 8}{8}\right) \overline{x}$$

$$x^{2} - tr A \lambda + det A = 0$$

$$x^{2} - 2\lambda + 65 = 0$$

$$x' = x - 8y$$

$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

$$\lambda^{2} - tr A \lambda + det A = 0$$

$$\lambda^{2} - \lambda \lambda + 65 = 0$$

$$\lambda = 1 \pm i 8$$

$$x' = x - 8y$$

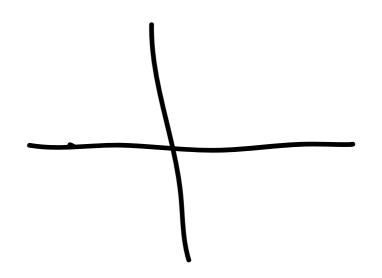
$$y' = 8x + y$$

$$\overline{X}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{X}$$

$$\lambda^{2} - tr A \lambda + det A = 0$$

$$\lambda^{2} - \lambda \lambda + 65 = 0$$

$$\lambda = |\pm i 8|$$



$$x' = x - 8y$$

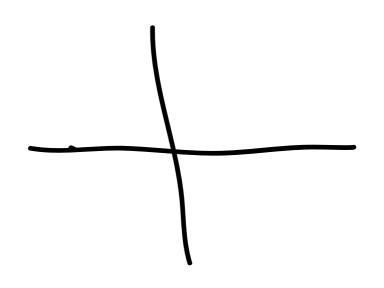
$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

$$\lambda^{2} - tr A \lambda + det A = 0$$

$$\lambda^{2} - 2\lambda + 65 = 0$$

$$\lambda = |\pm i 8|$$



$$\underline{X} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$x' = x - 8y$$

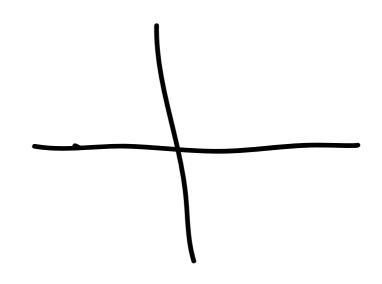
$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

$$\lambda^{2} - tr A \lambda + det A = 0$$

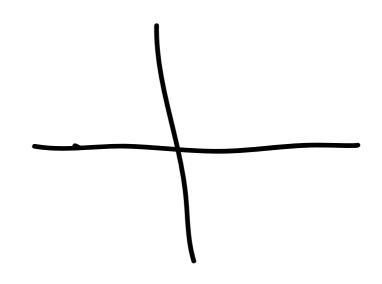
$$\lambda^{2} - 2\lambda + 65 = 0$$

$$\lambda = |\pm i | 8$$



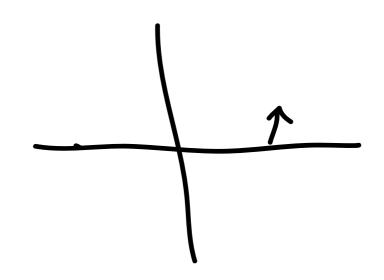
$$\overline{X} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow$$

$$x' = x - 8y$$
  
 $y' = 8x + y$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$ 



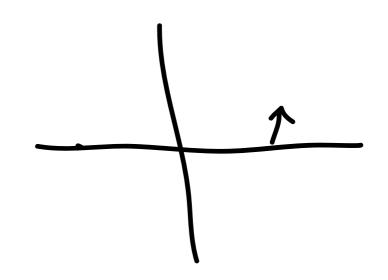
$$\overline{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \overline{X}' = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$

$$x' = x - 8y$$
  
 $y' = 8x + y$   
 $x' = (1 - 8) \overline{x}$   
 $x' = (1 - 8) \overline{x}$ 



$$\overline{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \overline{X}' = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$

$$x' = x - 8y$$
  
 $y' = 8x + y$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$   
 $x' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$ 



$$\overline{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \overline{X}' = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$

$$\overline{X} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$x' = x - 8y$$

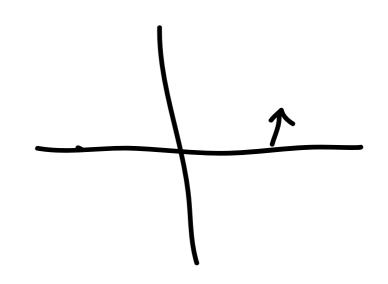
$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

$$\lambda^{2} - tr A \lambda + def A = 0$$

$$\lambda^{2} - 2\lambda + 65 = 0$$

$$\lambda = |\pm i | 8$$



$$\overline{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \overline{X}' = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$
 $\overline{X} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow$ 

$$x' = x - 8y$$

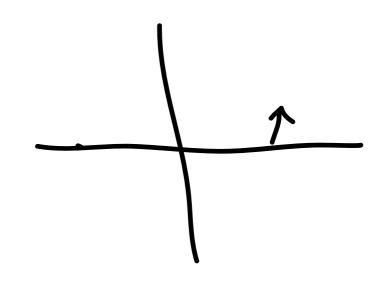
$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

$$\lambda^{2} - tr A \lambda + de + A = 0$$

$$\lambda^{2} - \lambda \lambda + 65 = 0$$

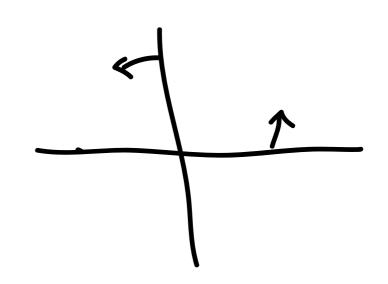
$$\lambda = |\pm i 8|$$



$$\overline{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies \overline{X}' = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$

$$\overline{x} = \binom{0}{1} \Rightarrow \overline{x}' = \binom{8}{1}$$

$$x' = x - 8y$$
  
 $y' = 8x + y$   
 $x' = (1 - 8) \overline{x}$   
 $x' = (1 - 8) \overline{x}$ 



$$\overline{X} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \overline{X}' = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$$

$$\overline{X} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow \overline{X}' = \begin{pmatrix} -8 \\ 1 \end{pmatrix}$$

$$x' = x - 8y$$

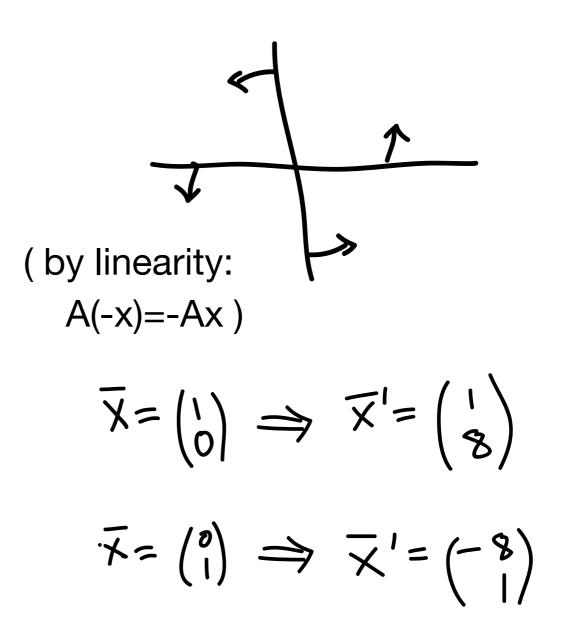
$$y' = 8x + y$$

$$\overline{x}' = \begin{pmatrix} 1 - 8 \\ 8 \end{pmatrix} \overline{x}$$

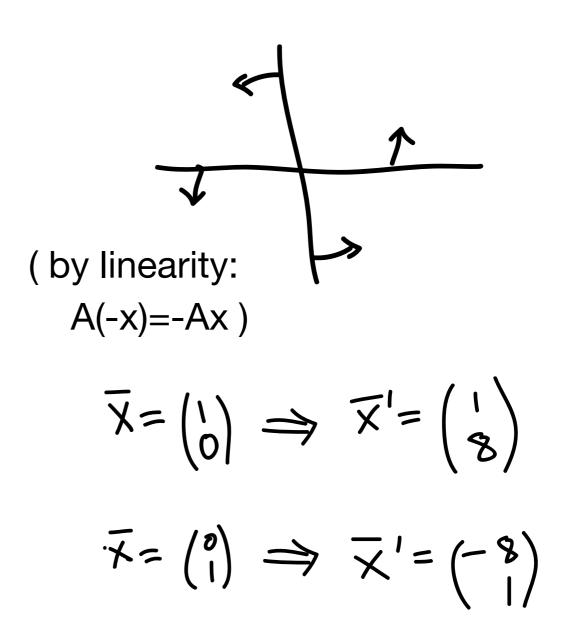
$$\lambda^{2} - tr A \lambda + det A = 0$$

$$\lambda^{2} - 2\lambda + 65 = 0$$

$$\lambda = |\pm i | 8$$



$$x' = x - 8y$$
  
 $y' = 8x + y$   
 $x' = (1 - 8) \overline{x}$   
 $x' = (1 - 8) \overline{x}$ 



Counterclockwise rotation!

## Repeated eigenvalues

- What happens when you get two identical eigenvalues?
- Two cases:
  - 1. The single eigenvalue has two distinct eigenvectors.
  - 2. There is only one eigenvector (matrix is defective).

1. 
$$\overline{\mathbf{x}}' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \overline{\mathbf{x}}$$
 2.  $\overline{\mathbf{x}}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \overline{\mathbf{x}}$ 

## Repeated eigenvalues

- What happens when you get two identical eigenvalues?
- Two cases:
  - 1. The single eigenvalue has two distinct eigenvectors.
  - 2. There is only one eigenvector (matrix is defective).

1. 
$$\overline{\mathbf{x}}' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \overline{\mathbf{x}}$$
 2.  $\overline{\mathbf{x}}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \overline{\mathbf{x}}$ 



# Repeated eigenvalues

1. 
$$\overline{\mathbf{x}}' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \overline{\mathbf{x}}$$

$$\det(A - \lambda I) = (\lambda - 3)^2 = 0$$

$$\lambda = 3$$

$$(A - \lambda I)\mathbf{v} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{v} = 0$$

All vectors solve this so choose any two independent vectors:

$$\mathbf{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$\mathbf{x}(t) = C_1 e^{3t} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

2. 
$$\overline{\mathbf{x}}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \overline{\mathbf{x}}$$

$$\det(A - \lambda I) = \lambda^2 - 4\lambda + 4 = 0$$

$$\lambda = 2$$

$$(A - \lambda I)\mathbf{v} = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \mathbf{v} = 0$$

$$\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad \text{<-- only 1 evector!}$$

$$\mathbf{x}(t) = C_1 e^{2t} \mathbf{v} + C_2 e^{2t} (\mathbf{w} + t \mathbf{v})$$

$$(A - \lambda I)\mathbf{w} = \mathbf{v}$$

$$\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} \quad \text{<-- called generalized evector}$$

## Systems of ODEs - steps for solving (2x2)

- Find evalues ( $\lambda$ ) and evectors ( $\mathbf{v}$ ) or generalized evectors ( $\mathbf{w}$ ) of A:
  - Distinct real  $\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v_1} + C_2 e^{\lambda_2 t} \mathbf{v_2}$ where  $\lambda$  and  $\mathbf{v_i}$  solve ( A -  $\lambda$ I )  $\mathbf{v_i}$  =0.
  - Complex  $\mathbf{x}(\mathbf{t}) = e^{\alpha t} \left[ C_1 \left( \mathbf{a} \cos(\beta t) \mathbf{b} \sin(\beta t) \right) + C_2 \left( \mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \right) \right]$ where  $\lambda_1 = \alpha + \beta i$  and  $\mathbf{v_1} = \mathbf{a} + \mathbf{b}i$ .
  - Repeated with two eigenvectors (diagonal matrices only) -

$$\mathbf{x}(t) = C_1 e^{\lambda t} \mathbf{v_1} + C_2 e^{\lambda t} \mathbf{v_2}$$

• Repeated with one eigenvector -  $\mathbf{x}(t) = C_1 e^{\lambda t} \mathbf{v} + C_2 e^{\lambda t} (\mathbf{w} + t \mathbf{v})$  where  $\lambda$  and  $\mathbf{v}$  solve (A -  $\lambda$ I)  $\mathbf{v}$  =  $\mathbf{0}$  and  $\mathbf{w}$  solves (A -  $\lambda$ I)  $\mathbf{w}$  =  $\mathbf{v}$ .

### Steady state - two notions

- Forced mass-spring systems long term behaviour after transient dies down.
  - If you don't start right on the SS, a transient decays exponentially so eventually only y<sub>p</sub> remains.
  - SS can be oscillation (not constant).
- Constant solutions of a system of ODEs (discussed in the next slides).
  - Transient may decay or grow exponentially.
  - Always constant solutions!

**Steady states -** constant solutions (set x'=0 and solve Ax=0).

 $\bullet$  For the system of equations  ${\bf x}'=A{\bf x}$  , we always have  ${\bf x}(t)={\bf 0}$  as a steady state solution.

- $\bullet$  For the system of equations  ${\bf x}'=A{\bf x}$  , we always have  ${\bf x}(t)={\bf 0}$  as a steady state solution.
- If A is singular matrix with  $A\mathbf{v} = \mathbf{0}$  then  $\mathbf{x}(t) = \mathbf{v}$  is also a steady state solution.

- $\bullet$  For the system of equations  ${\bf x}'=A{\bf x}$  , we always have  ${\bf x}(t)={\bf 0}$  as a steady state solution.
- If A is singular matrix with  $A\mathbf{v} = \mathbf{0}$  then  $\mathbf{x}(t) = \mathbf{v}$  is also a steady state solution.
  - In fact,  $\mathbf{x}(t) = c\mathbf{v}$  is a steady state for all c.

- $\bullet$  For the system of equations  $\mathbf{x}'=A\mathbf{x}$  , we always have  $\mathbf{x}(t)=\mathbf{0}$  as a steady state solution.
- If A is singular matrix with  $A\mathbf{v} = \mathbf{0}$  then  $\mathbf{x}(t) = \mathbf{v}$  is also a steady state solution.
  - In fact,  $\mathbf{x}(t) = c\mathbf{v}$  is a steady state for all c.
  - It is also an eigenvector associated with eigenvalue  $\lambda = 0$ .

- $\bullet$  For the system of equations  $\mathbf{x}'=A\mathbf{x}$  , we always have  $\mathbf{x}(t)=\mathbf{0}$  as a steady state solution.
- If A is singular matrix with  $A\mathbf{v} = \mathbf{0}$  then  $\mathbf{x}(t) = \mathbf{v}$  is also a steady state solution.
  - In fact,  $\mathbf{x}(t) = c\mathbf{v}$  is a steady state for all c.
  - It is also an eigenvector associated with eigenvalue  $\lambda = 0$ .
- ullet If A is nonsingular then  $\mathbf{x}(t) = \mathbf{0}$  is the only steady state.

### **Steady states**

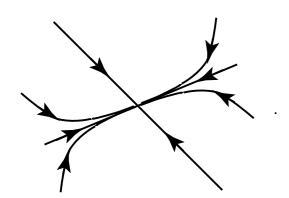
Steady states are classified by the nature of the surrounding solutions:

### **Steady states**

Steady states are classified by the nature of the surrounding solutions:

### stable node

- real negative evalues

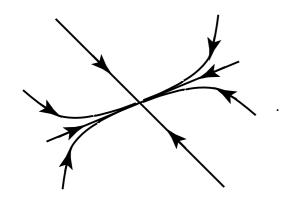


### **Steady states**

Steady states are classified by the nature of the surrounding solutions:

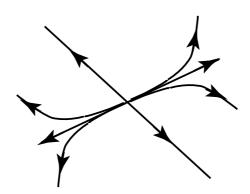
#### stable node

- real negative evalues



### unstable node

- real positive evalues

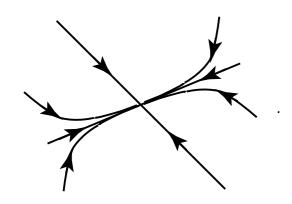


### **Steady states**

Steady states are classified by the nature of the surrounding solutions:

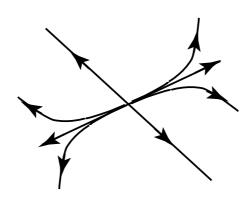
#### stable node

- real negative evalues



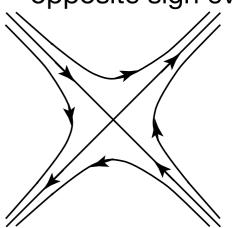
### unstable node

- real positive evalues



### saddle

- opposite sign evalues

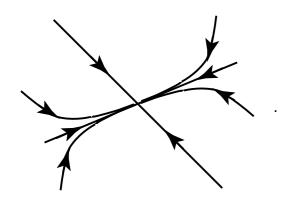


### **Steady states**

Steady states are classified by the nature of the surrounding solutions:

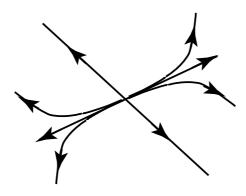
#### stable node

- real negative evalues



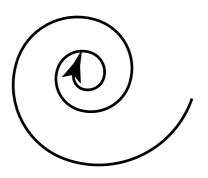
### unstable node

- real positive evalues



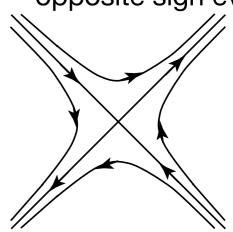
### stable spiral

 complex evalues, negative real part



### saddle

- opposite sign evalues

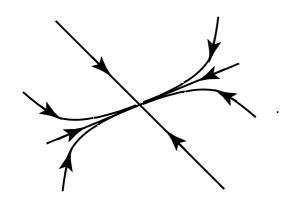


### **Steady states**

Steady states are classified by the nature of the surrounding solutions:

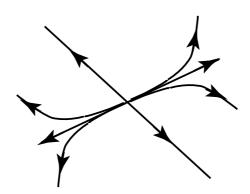
#### stable node

- real negative evalues



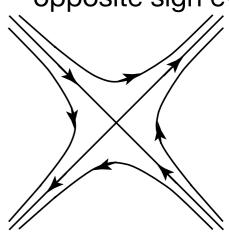
### unstable node

- real positive evalues



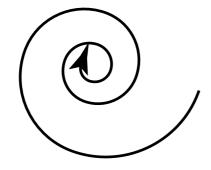
### saddle

- opposite sign evalues



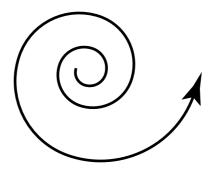
### stable spiral

 complex evalues, negative real part



### unstable spiral

 complex evalues, positive real part



$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$\det(A - \lambda I) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\det(A - \lambda I) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\det(A - \lambda I) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc$$

$$= \lambda^2 - (a + d)\lambda + ad - bc$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc$$

$$= \lambda^2 - (a + d)\lambda + ad - bc$$

$$= \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$= (a - \lambda)(d - \lambda) - bc$$

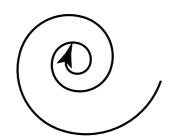
$$= \lambda^2 - (a + d)\lambda + ad - bc$$

$$= \lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$$

$$= 0$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

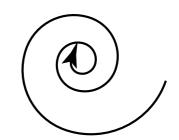
(C) 
$$\begin{cases} trA < 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA > 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



$$(A) \begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

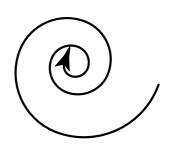
(C) 
$$\begin{cases} trA < 0, \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA > 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



$$(A) \begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

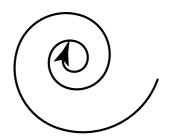
(C) 
$$\begin{cases} trA < 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} \operatorname{tr} A > 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



$$(A) \begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

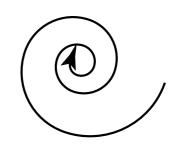
(C) 
$$\begin{cases} trA < 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} \operatorname{tr} A > 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



$$(A) \begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 & \text{ensures complex evalue} \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(C) 
$$\begin{cases} trA < 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} \operatorname{tr} A > 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \mathrm{tr} A \lambda + \det A = 0$$

$$\Rightarrow \text{(A)} \quad \left\{ \begin{array}{l} \mathrm{tr} A < 0 \\ (\mathrm{tr} A)^2 < 4 \det A \end{array} \right. \quad \lambda = \boxed{\frac{\mathrm{tr} A}{2}} \pm \boxed{\frac{\sqrt{(\mathrm{tr} A)^2 - 4 \det A}}{2}}$$

$$\text{(B)} \quad \left\{ \begin{array}{l} \mathrm{tr} A > 0 \\ (\mathrm{tr} A)^2 < 4 \det A \end{array} \right. \quad \lambda = \boxed{\frac{\mathrm{tr} A}{2}} \pm \boxed{\frac{\sqrt{(\mathrm{tr} A)^2 - 4 \det A}}{2}}$$

(C) 
$$\begin{cases} trA < 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA > 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When do the solutions spiral IN to the origin?

$$\lambda^2 - \operatorname{tr} A \lambda + \det A = 0$$
 ensures negative real part 
$$\bigstar(A) \quad \left\{ \begin{array}{l} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{array} \right. \quad \lambda = \boxed{\frac{\operatorname{tr} A}{2}} \pm \boxed{\frac{\sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}}$$
 (B) 
$$\left\{ \begin{array}{l} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{array} \right. \quad \lambda = \boxed{\frac{\operatorname{tr} A}{2}} \pm \boxed{\frac{\sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}}$$

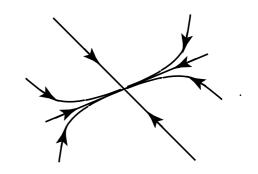
(C) 
$$\begin{cases} trA < 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA > 0, \ \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When is the origin a stable node?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

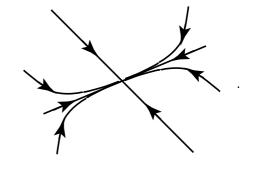
(C) 
$$\begin{cases} trA < 0, \det(A) > 0 \\ (trA)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA < 0, \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

• When is the origin a stable node?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

$$\text{(C)} \quad \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA < 0, \ \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

• When is the origin a stable node?

$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$



(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

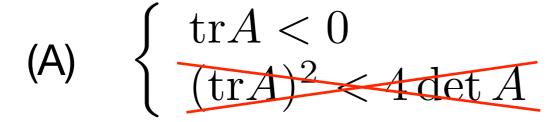
$$\text{(C)} \quad \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA < 0, \ \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

• When is the origin a stable node?

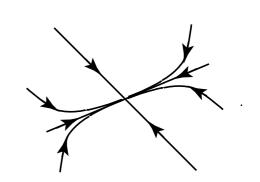
$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$

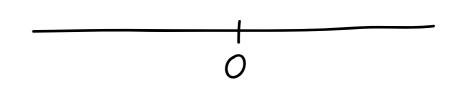


(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

$$\text{(C)} \quad \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA < 0, \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$

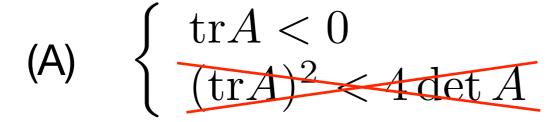




$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

• When is the origin a stable node?

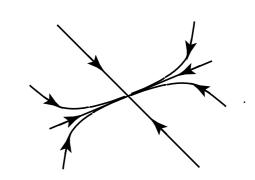
$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$

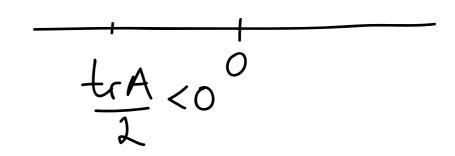


(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

$$\begin{array}{l} \bigstar(\mathbf{C}) \quad \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases} \end{array}$$

(D) 
$$\begin{cases} trA < 0, \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$





$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When is the origin a stable node?

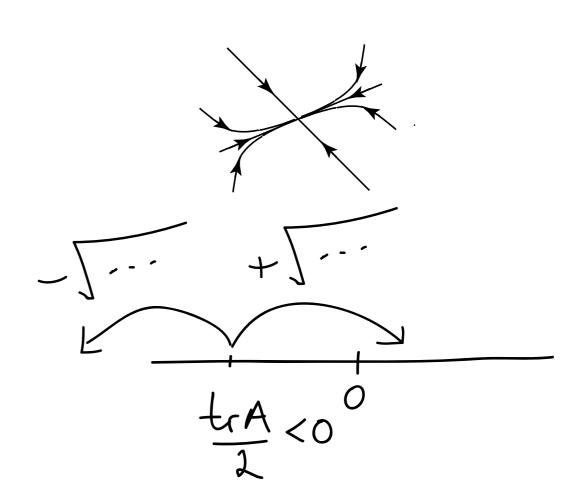
$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$

(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

$$\begin{array}{l} \bigstar(\mathbf{C}) \quad \left\{ \begin{array}{l} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{array} \right. \end{array}$$

(D) 
$$\begin{cases} trA < 0, \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$



$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

When is the origin a stable node?

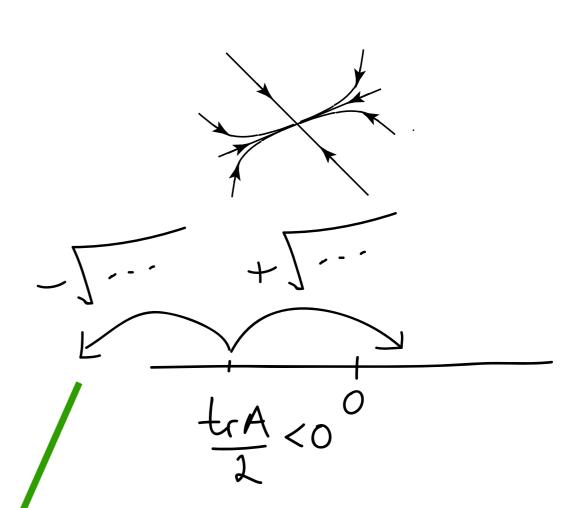
$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$

(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

$$\begin{array}{l} \bigstar(C) & \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases} \\ \text{(D)} & \begin{cases} \operatorname{tr} A < 0, \ \det(A) < 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases} \end{cases} \end{array}$$

(D) 
$$\begin{cases} trA < 0, \ \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$



$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

• When is the origin a stable node?

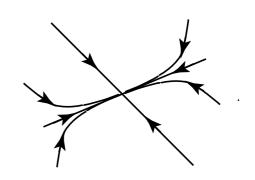
$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$

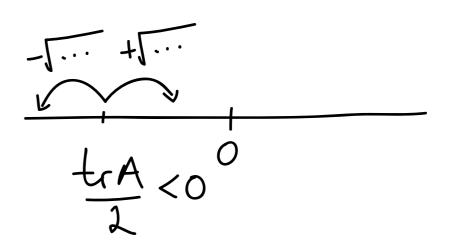
(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

$$\text{(C)} \quad \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

(D) 
$$\begin{cases} trA < 0, \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$





$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

• When is the origin a stable node?

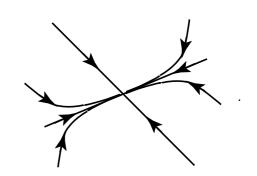
$$\lambda^2 - \operatorname{tr} A\lambda + \det A = 0$$

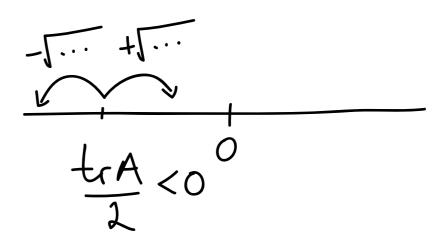
(A) 
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

(B) 
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^2 < 4 \det A \end{cases}$$

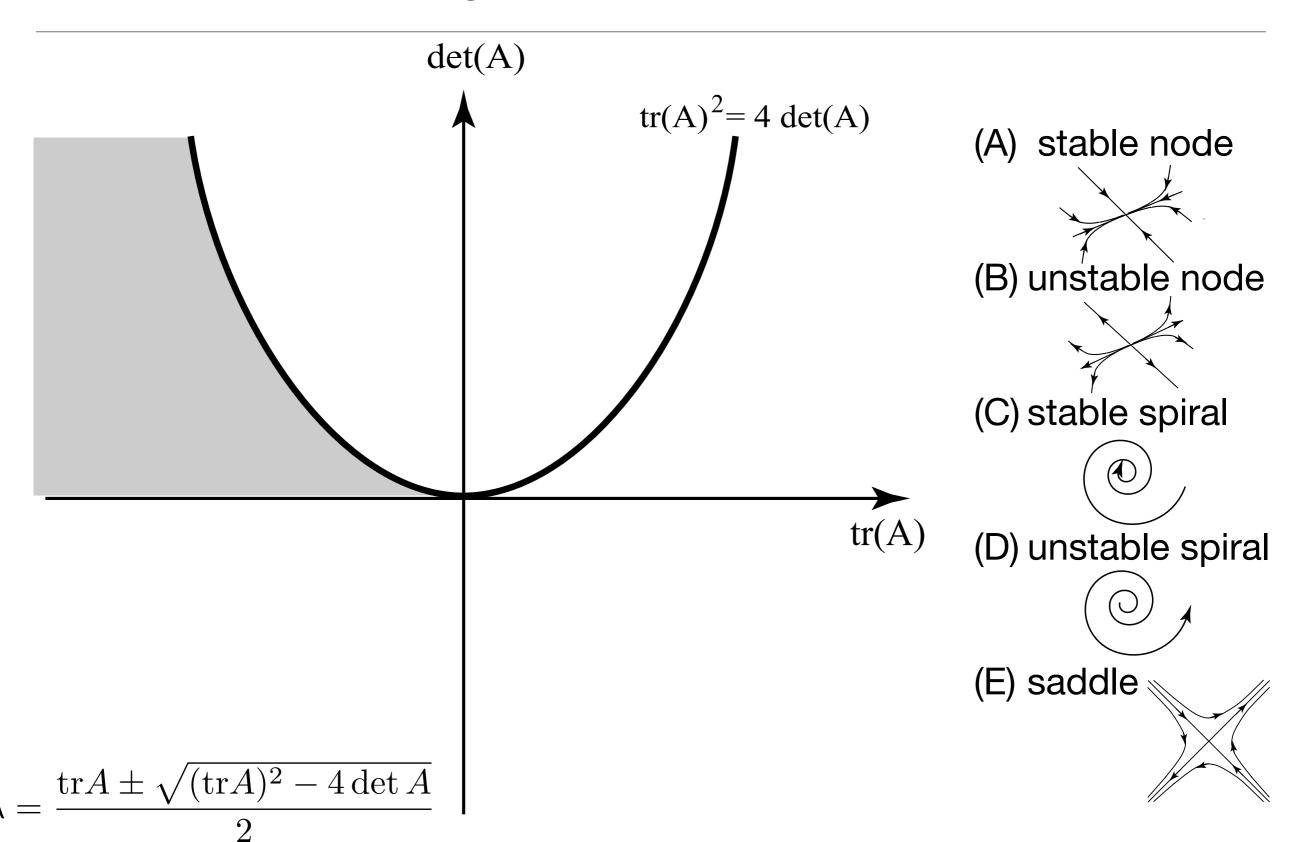
$$\text{(C)} \quad \begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^2 > 4 \det A \end{cases}$$

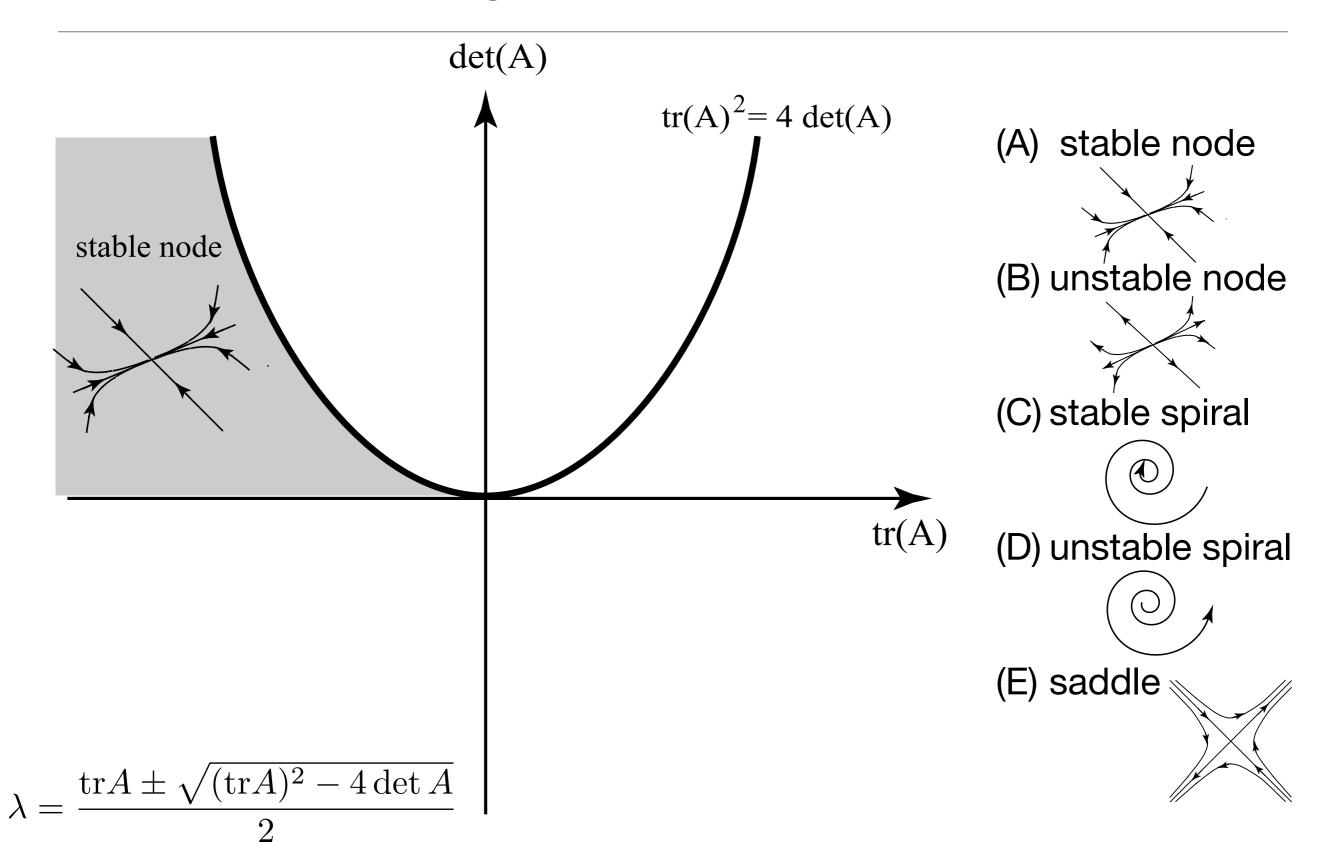
(D) 
$$\begin{cases} trA < 0, \ \det(A) < 0 \\ (trA)^2 > 4 \det A \end{cases}$$

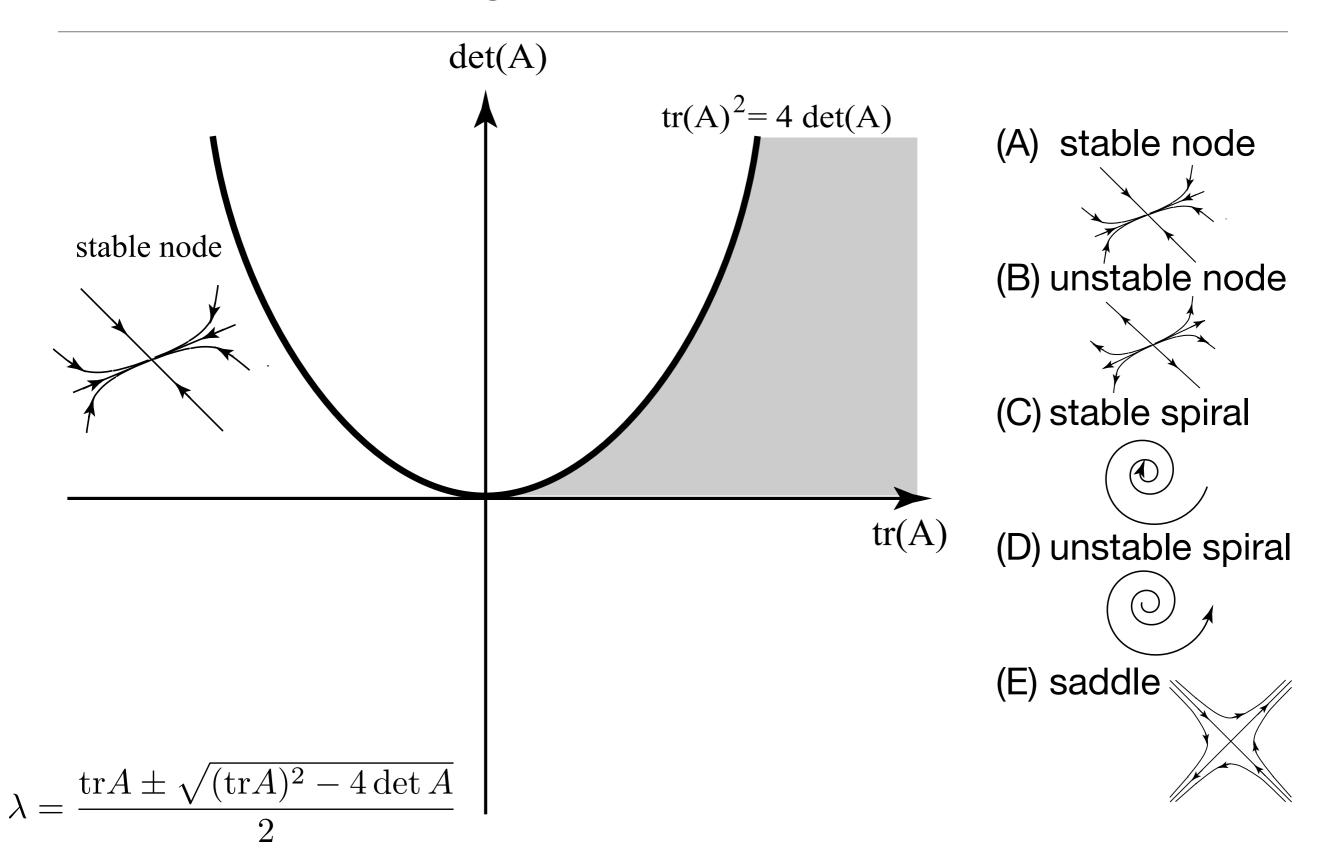


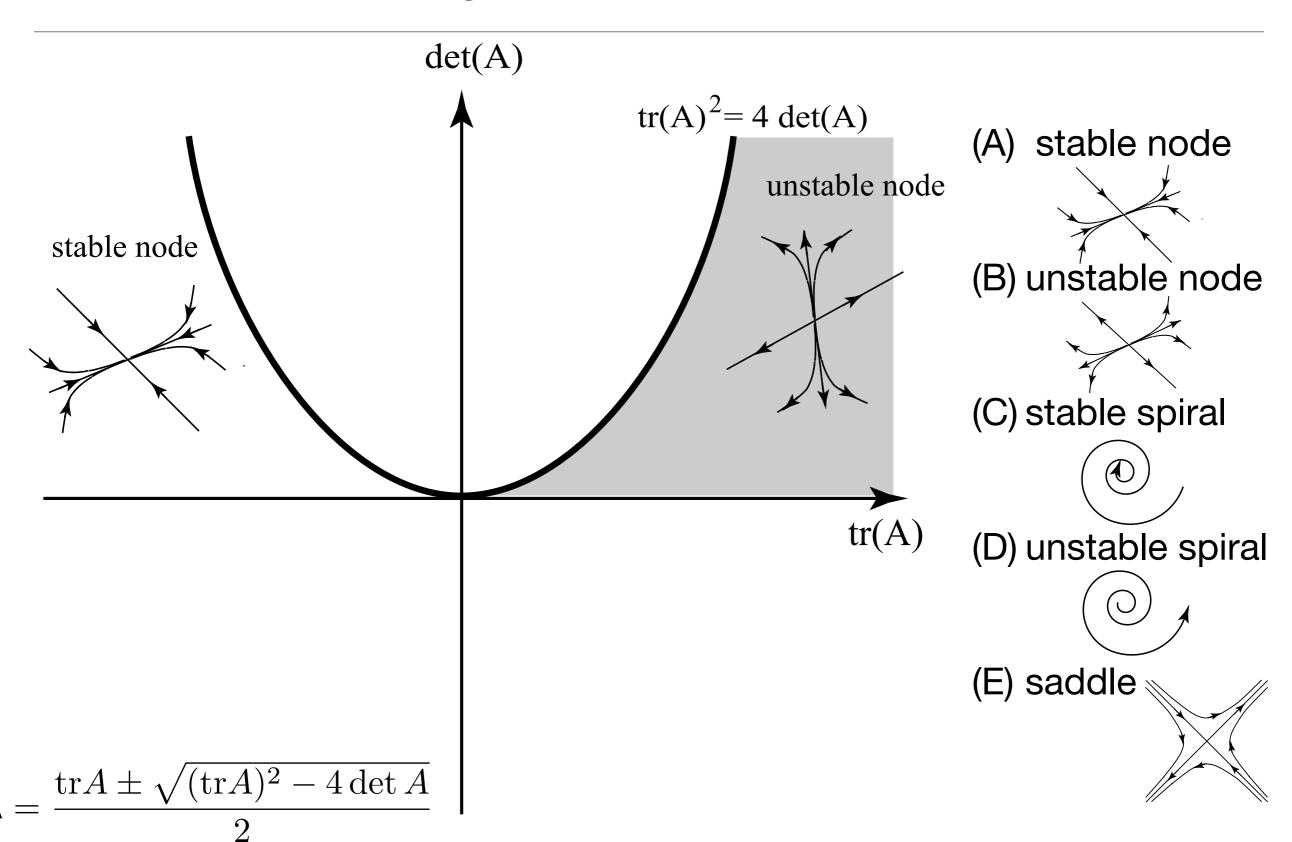


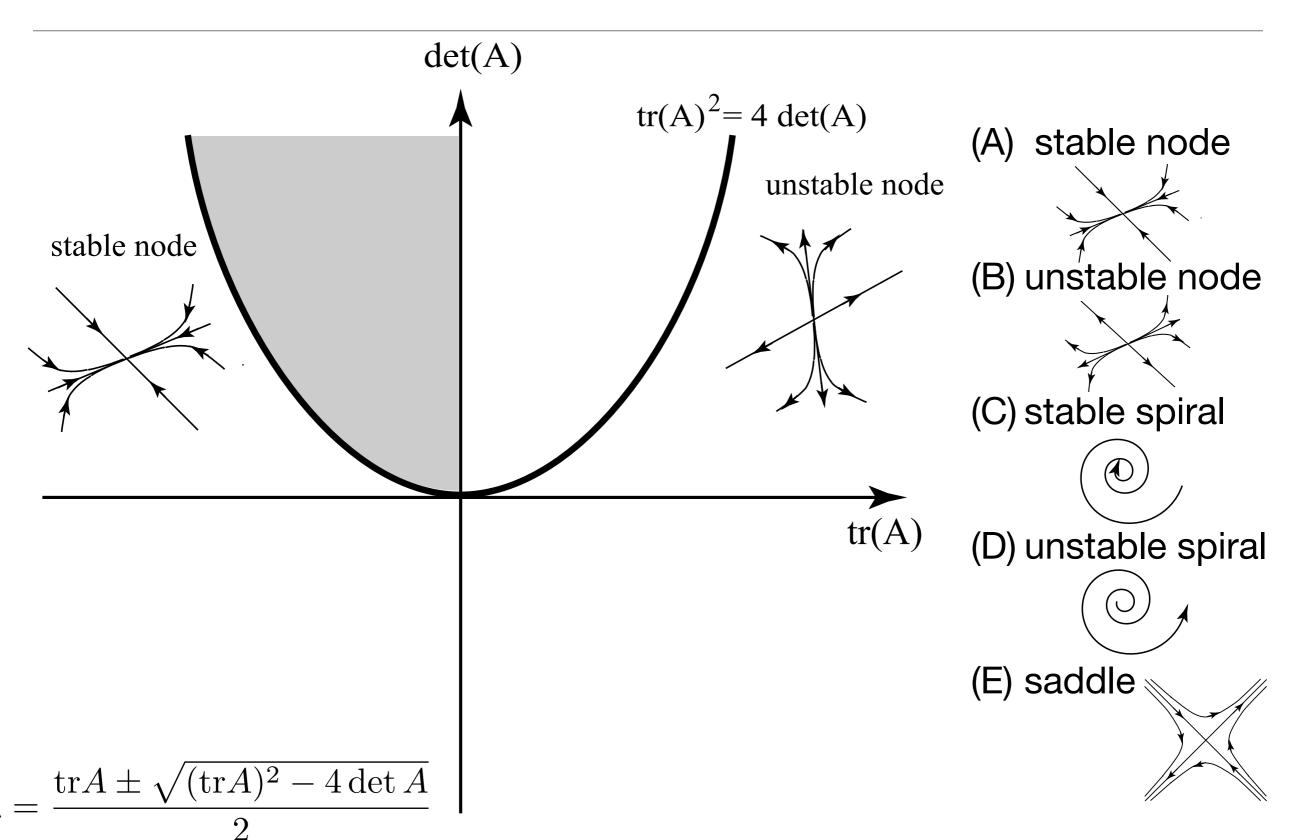
$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^2 - 4 \det A}}{2}$$

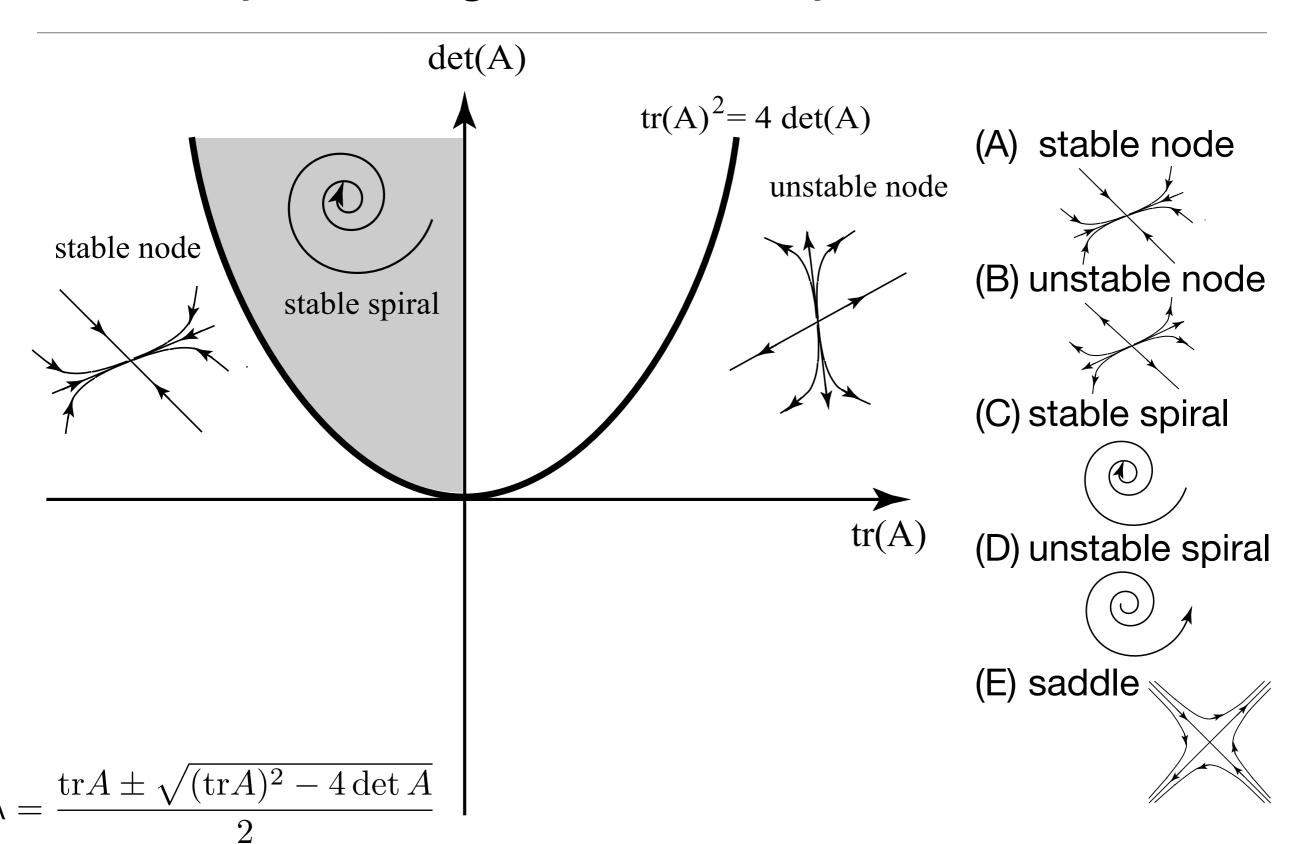


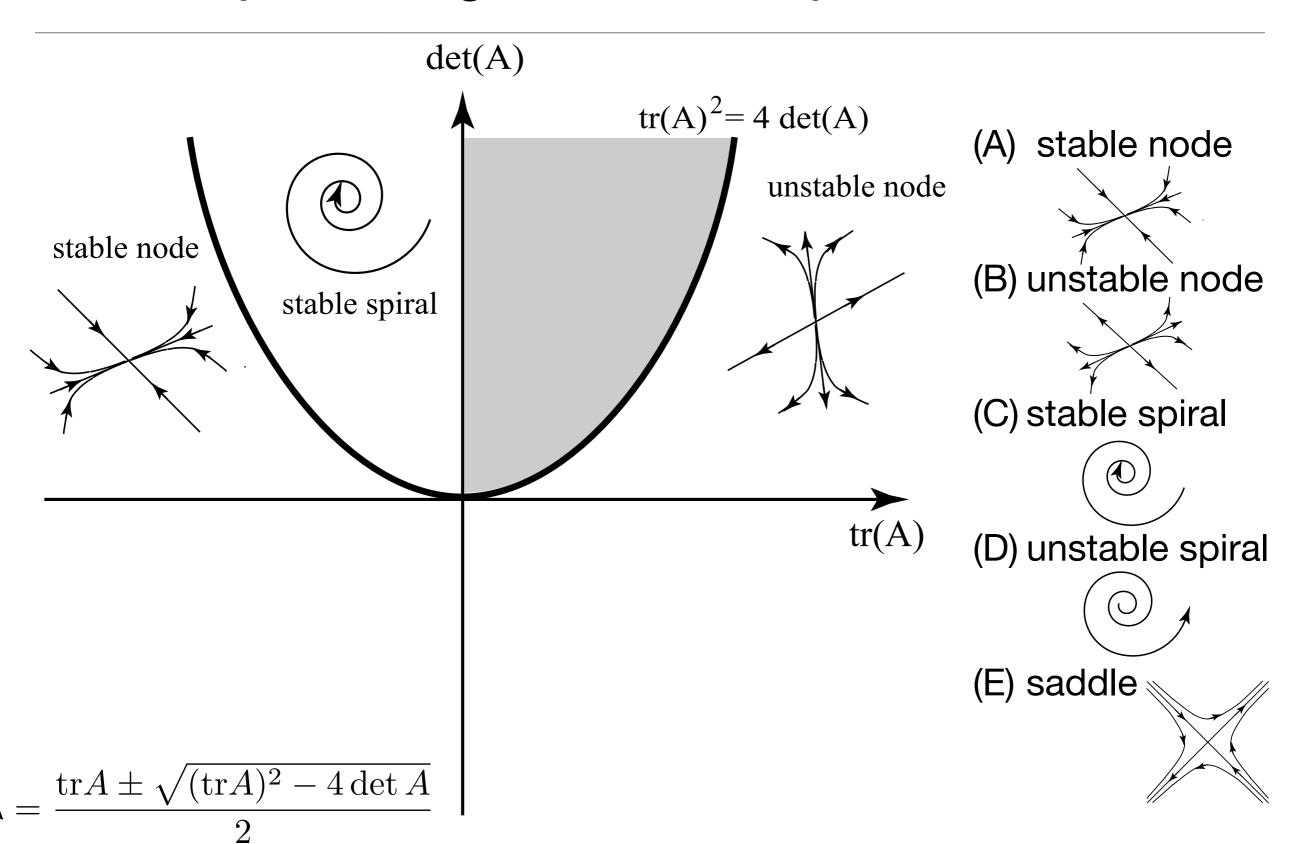


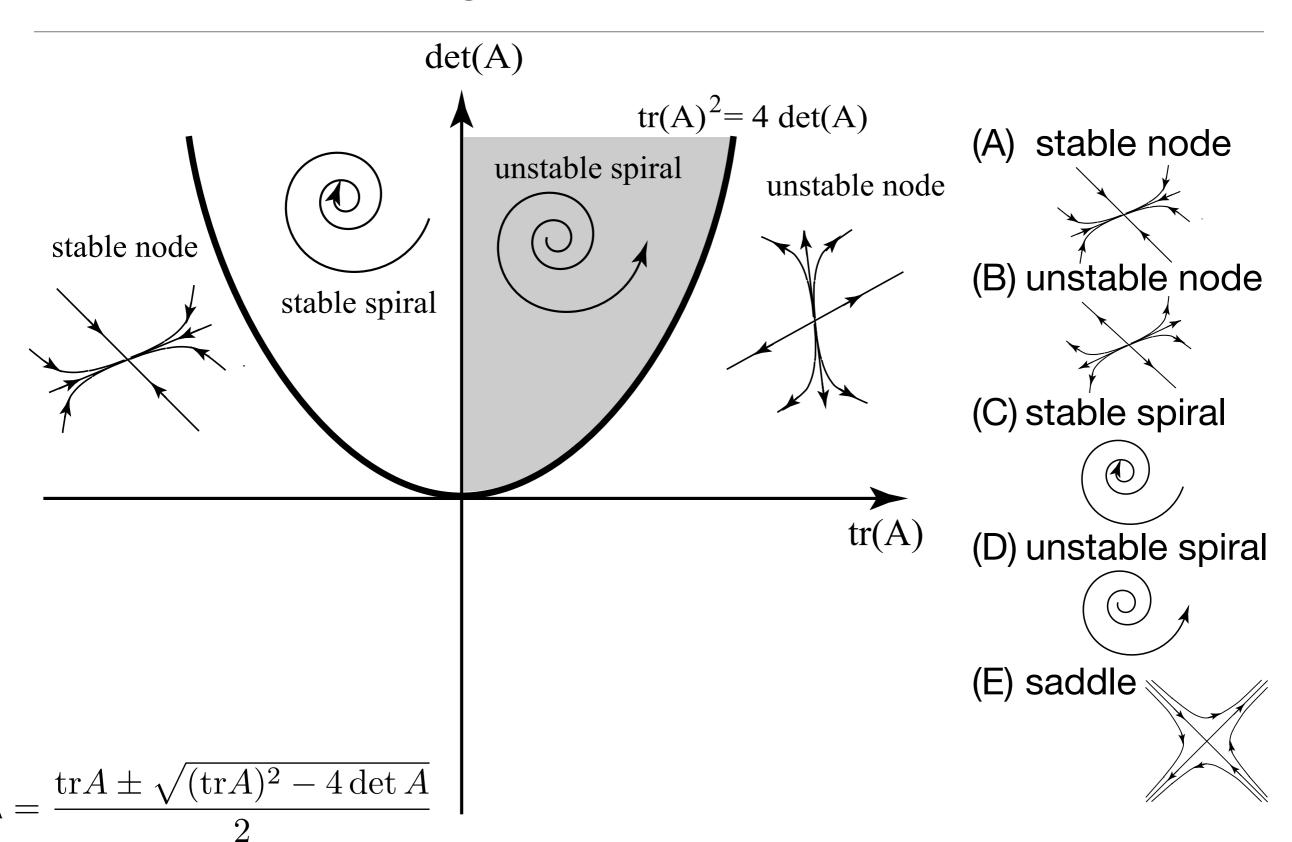


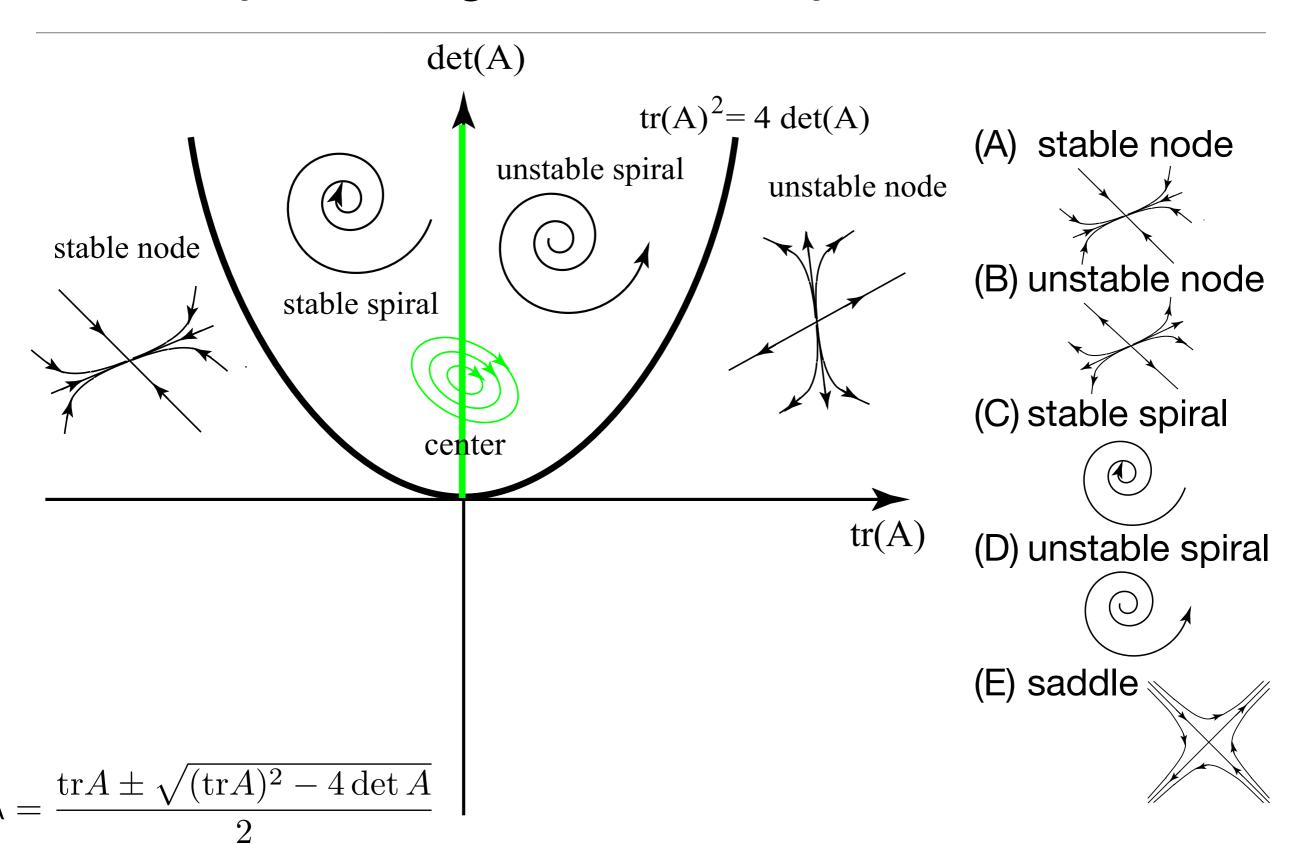


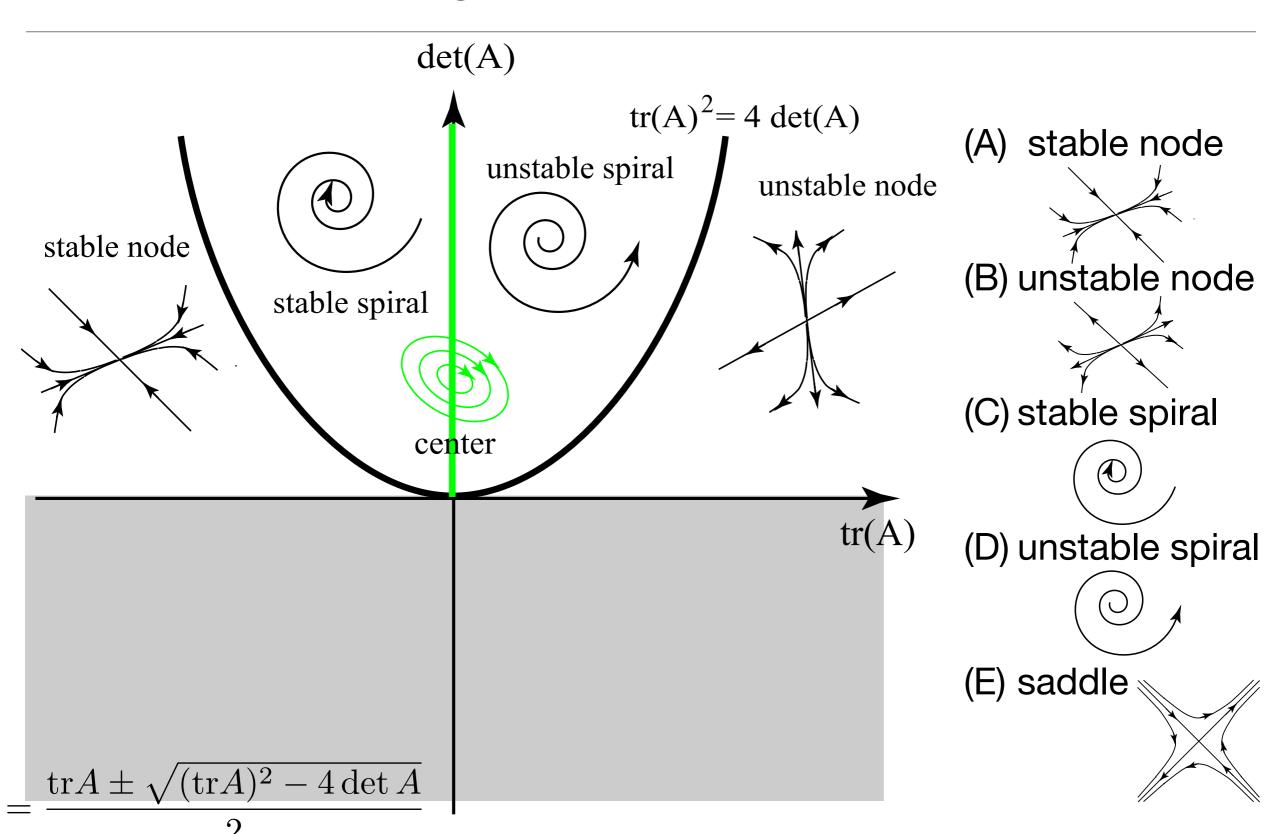


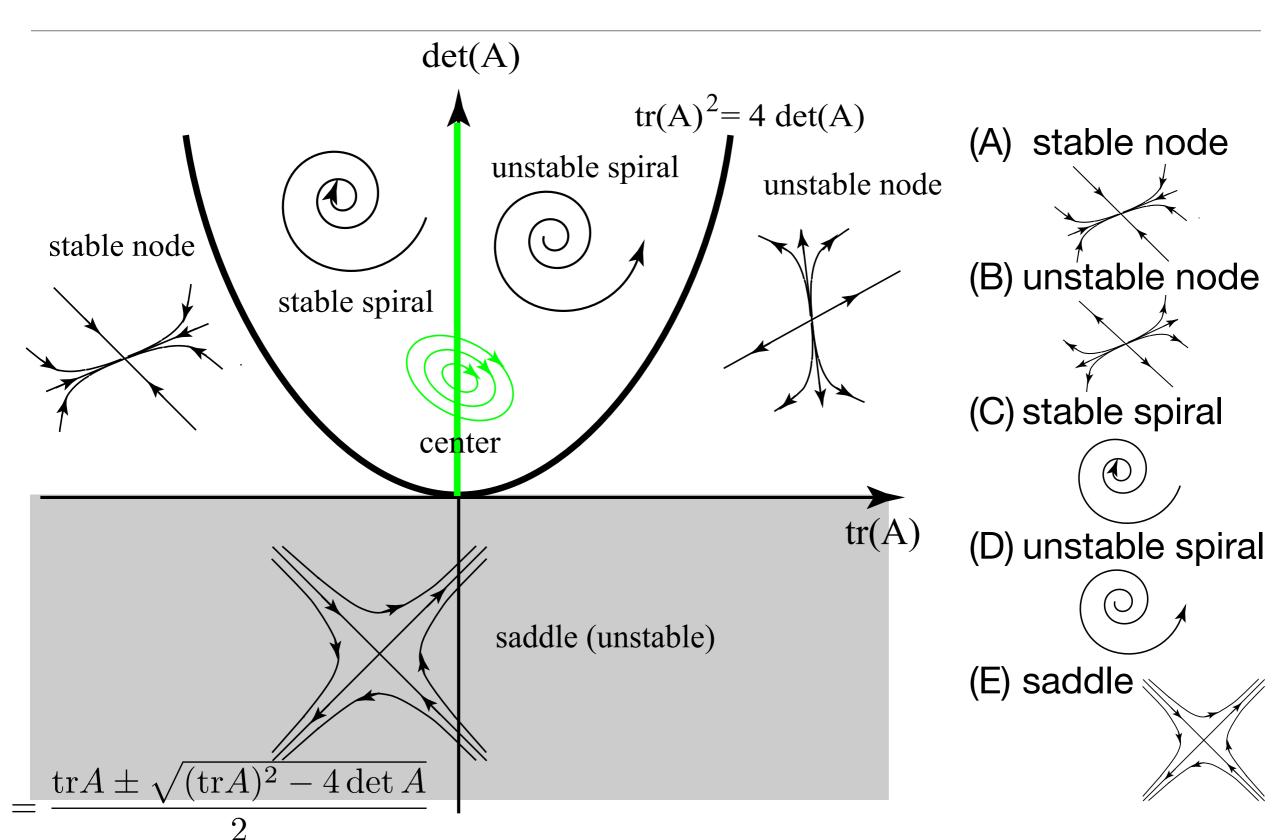


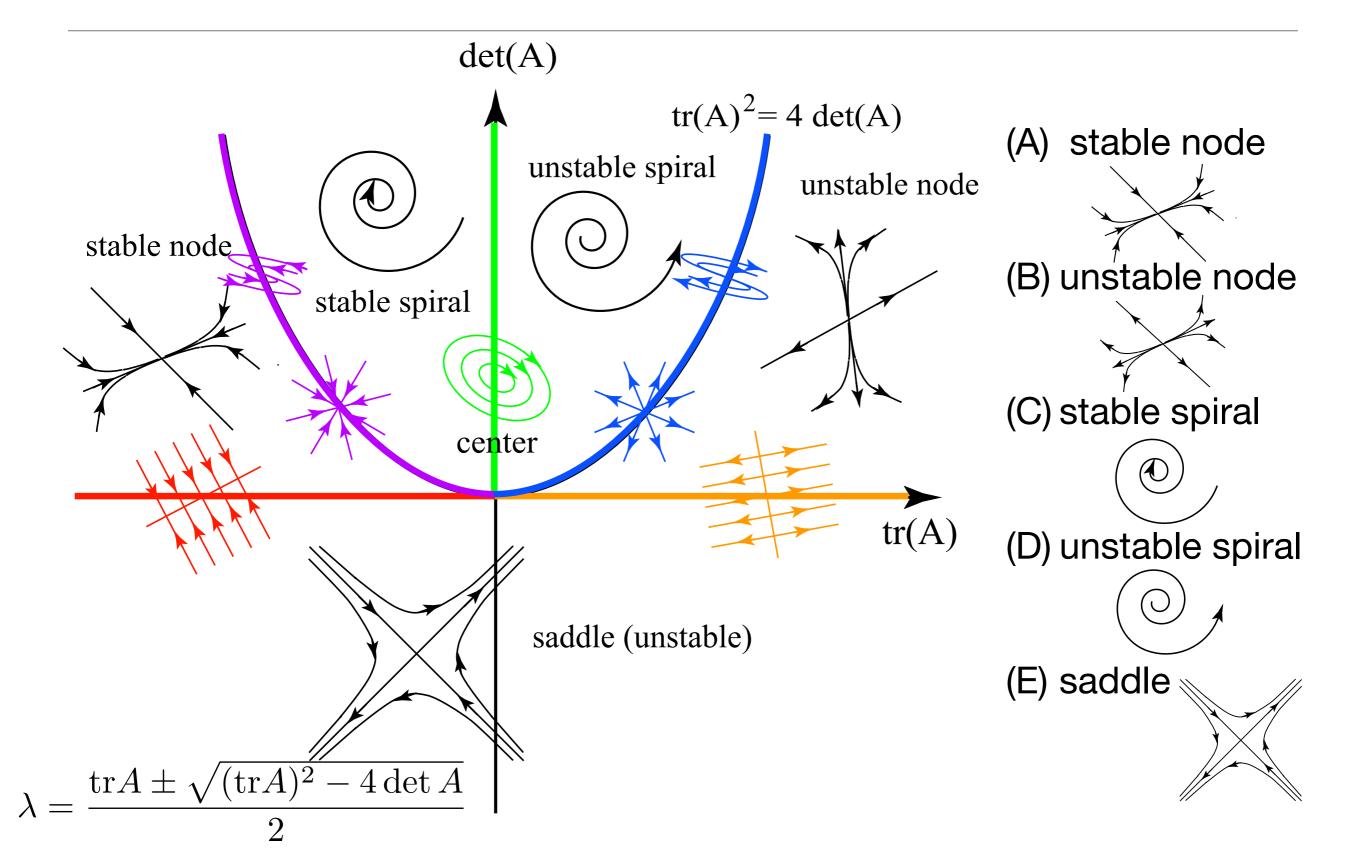




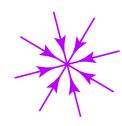








#### Repeated evalue cases:



 $\lambda$ <0, two indep. evectors.



 $\lambda$ >0, two indep. evectors.

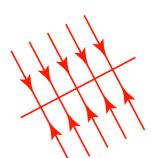


 $\lambda$ <0, only one evector.

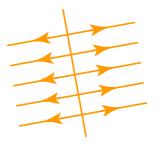


 $\lambda$ >0, only one evector.

#### One zero evalue (singular matrix):



$$\lambda_1=0, \lambda_2<0,$$



$$\lambda_1=0, \lambda_2>0,$$