$MATH\ 256-Midterm\ 2-March\ 20,\ 2014.$

Last name: ______ First name: _____ Student #: _____

I attend the tutorial in room: MATH 105 MATH 203 (circle one)

Place a box around each answer so that it is clearly identified. Point values are approximate and may differ slightly in the final marking scheme.

1. [3 pts] Calculate the Laplace transform of the function $g(t) = 3\delta(t-2) + 3u_3(t) + te^{4t}$.

2. [3 pts] Find the inverse Laplace transform of $Y(s) = e^{-2s} \frac{s}{s^2 + 5s + 6}$.

3. [3 pts] Find the inverse Laplace transform of $Y(s) = \frac{12}{s^2 + 4s + 40}$.

4. [3 pts] Find the general solution to the equation

$$\mathbf{x}' = \begin{pmatrix} 2 & -3 \\ 3 & 2 \end{pmatrix} \mathbf{x}.$$

Hint: one of the eigenvalues is 2 + 3i.

5. [4 pts] Morphine is cleared from the body at a rate proportional to the amount present with a rate constant k = 1/3 hour⁻¹. A patient is given an injection of 20 mg morphine immediately after surgery (t = 0) and again at 6 and 12 hours after surgery. Treating each injection as an instantaneous event, write down a differential equation to model the quantity of morphine in the patient's body as a function of time.

6. [4 pts] Match each solution to one of the vector fields.

7. [4 pts] Write down an expression for the function g(t) shown in the figure below using Heavside functions in the form $u_c(t)$.

8. [4 pts] Consider the equation $\mathbf{x}' = A\mathbf{x}$ where

$$A = \begin{pmatrix} \alpha & \beta \\ 1 & \alpha \end{pmatrix}.$$

In each row of the table below, give inequalities involving α and β which ensure that the steady state is of the given type. The first row provides an example.

0 01	
Type	Condtion(s) on α and β
unstable node	$0 < \beta < \alpha^2, \alpha > 0$
stable node	
unstable spiral	
stable spiral	
saddle	

Anything on this page will not be marked. It is for rough work.

Laplace transforms

f(t)	F(s)
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
t^n	$\frac{n!}{s^{n+1}}$
$\sin(at)$	$\frac{a}{s^2 + a^2}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$
$e^{at}f(t)$	F(s-a)
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
$u_c(t)f(t-c)$	$e^{-sc}F(s)$
$\delta(t-c)$	e^{-sc}
$\int_0^t f(t-w)g(w) \ dw$	F(s)G(s)

Equations

$$\mathbf{x}(\mathbf{t}) = e^{\alpha t} [C_1 \left(\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \right) + C_2 \left(\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \right)]$$