MATH 256 - Midterm 2 - March 20, 2014.
Last name: \qquad First name: \qquad Student \#: \qquad I attend the tutorial in room: MATH 105 MATH 203 (circle one)

Place a box around each answer so that it is clearly identified. Point values are approximate and may differ slightly in the final marking scheme.

1. [3 pts] Calculate the Laplace transform of the function $g(t)=3 \delta(t-2)+3 u_{3}(t)+t e^{4 t}$.
2. [$\mathbf{3} \mathbf{~ p t s}$] Find the inverse Laplace transform of $Y(s)=e^{-2 s} \frac{s}{s^{2}+5 s+6}$.
3. [$\mathbf{3} \mathbf{~ p t s}]$ Find the inverse Laplace transform of $Y(s)=\frac{12}{s^{2}+4 s+40}$.
4. [$\mathbf{3} \mathbf{p t s}$] Find the general solution to the equation

$$
\mathrm{x}^{\prime}=\left(\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right) \mathrm{x}
$$

Hint: one of the eigenvalues is $2+3 i$.
5. [4 pts] Morphine is cleared from the body at a rate proportional to the amount present with a rate constant $k=1 / 3$ hour $^{-1}$. A patient is given an injection of 20 mg morphine immediately after surgery $(t=0)$ and again at 6 and 12 hours after surgery. Treating each injection as an instantaneous event, write down a differential equation to model the quantity of morphine in the patient's body as a function of time.
6. [$\mathbf{4} \mathbf{~ p t s}]$ Match each solution to one of the vector fields.
(A)

(D)

(B)

(E)

(C)

(F)

Solution	Vector field (enter A,B,C,D,E or F)
$\mathbf{x}(\mathbf{t})=c_{1}\binom{2}{1} e^{-t}+c_{2}\binom{1}{-1} e^{-4 t}$	
$\mathbf{x}(\mathbf{t})=c_{1}\binom{2}{1} e^{-t}+c_{2}\binom{1}{-1} e^{2 t}$	
$\mathbf{x}(\mathbf{t})=c_{1}\binom{2}{1} e^{t}+c_{2}\binom{1}{-1} e^{4 t}$	
$\mathbf{x}(\mathbf{t})=e^{2 t}\left[C_{1}\binom{\cos (4 t)}{-\sin (4 t)}+C_{2}\binom{\sin (4 t)}{\cos (4 t)}\right]$	

7. [4 pts] Write down an expression for the function $g(t)$ shown in the figure below using Heavside functions in the form $u_{c}(t)$.

8. [4 pts] Consider the equation $\mathrm{x}^{\prime}=A \mathrm{x}$ where

$$
A=\left(\begin{array}{cc}
\alpha & \beta \\
1 & \alpha
\end{array}\right)
$$

In each row of the table below, give inequalities involving α and β which ensure that the steady state is of the given type. The first row provides an example.

Type	Condtion(s) on α and β
unstable node	$0<\beta<\alpha^{2}, \alpha>0$
stable node	
unstable spiral	
stable spiral	
saddle	

Anything on this page will not be marked. It is for rough work.

Laplace transforms

$f(t)$	$F(s)$
1	$\frac{1}{s}$
$e^{a t}$	$\frac{1}{s-a}$
t^{n}	$\frac{n!}{s^{n+1}}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$e^{a t} f(t)$	$F(s-a)$
$f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$
$u_{c}(t) f(t-c)$	$e^{-s c} F(s)$
$\delta(t-c)$	$e^{-s c}$
$\int_{0}^{t} f(t-w) g(w) d w$	$F(s) G(s)$

Equations

$\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))+C_{2}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))\right]$

