Today

- Summary of steps for solving the Diffusion Equation with homogeneous Dirichlet or Neumann BCs using Fourier Series.
- Nonhomogeneous BCs
- Mixed Dirichlet/Neumann BCs
- End-of-term info:
 - Don't forget to complete the online teaching evaluation survey.
 - Next Thursday, two-stage review (optionally for 2/50 exam points).
 - Office hours during exams TBA but sometime Apr 15/16/27.

- Steps to solving the PDE:
 - Determine the eigenfunctions for the problem (look at BCs).
 - Represent the IC u(x,0)=f(x) by a sum of eigenfunctions (Fourier series).
 - Write down the solution by inserting $e^{\lambda t}$ into each term of the FS.

$$u_t = Du_{xx}$$
 \longrightarrow PDE determines all possible eigenfunctions.
 $\frac{du}{dx}\Big|_{x=0,L} = 0$ \longrightarrow BCs select a subset of the eigenfunctions.

 $u(x,0) = f(x) \longrightarrow$ IC is satisfied by adding up eigenfunctions.

 $u_t = Du_{xx}$ \longrightarrow PDE determines all possible eigenfunctions.

Let's look for all possible eigenfunctions:

$$Dv_{xx}(x) = \lambda v(x)$$

Case I: $\lambda < 0$. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}}x\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}}x\right)$

For each value of λ <0, these are both eigenfunctions.

Case II: $\lambda = 0$. $v_{xx} = 0 \Rightarrow v_x = C_1 \Rightarrow v(x) = C_1 x + C_2$

The λ =0 eigenfunctions are therefore v(x) = 1 and v(x) = x.

These do not decay with time so they form the steady state.

Case III:
$$\lambda > 0$$
. $v_{\lambda}(x) = e^{\sqrt{\frac{\lambda}{D}}x}$ and $w_{\lambda}(x) = e^{-\sqrt{\frac{\lambda}{D}}x}$

These don't satisfy any BCs so we'll drop this case.

 $u_t = Du_{xx}$ \longrightarrow PDE determines all possible eigenfunctions.

 $u(0,t) = u(2,t) = 0 \longrightarrow$ BCs select a subset of the eigenfunctions.

Case I:
$$\lambda < 0$$
. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}}x\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}}x\right)$

The BC at x=0 only works for $w_{\lambda}(x)$ and the BC at x=L only works for certain λ , in particular $\lambda = -n^2 \pi^2 D/L^2$.

Case II: λ =0. v(x) = 1 and v(x) = x

Represent IC u(x,0) = f(x) by
$$u(x,0) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 D t/L^2} \sin \frac{n\pi x}{L}$$

...with nonhomogeneous boundary conditions

$$u_{t} = Du_{xx}$$
an eigenfunction for the homogeneous BCs
$$u(2, t) = 4 \qquad \longrightarrow \text{Nonhomogeneous BCs}$$
Case I: $\lambda < 0$. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}x}\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}x}\right)$
The BC at x=0 only works for $w_{\lambda}(x)$ and the BC at x=L "almost" works for certain λ , in particular $\lambda = -n^{2}\pi^{2}D/L^{2}$.
Case II: $\lambda = 0$. $v(x) = 1$ and $v(x) = 2x \qquad \text{a particular eigenfunction for the inhomogeneous BCs}$
Ultimately, we want $u(x, t) = 2x + \sum_{n=1}^{\infty} b_{n}e^{-n^{2}\pi^{2}Dt/L^{2}} \sin \frac{n\pi x}{L}$
What function do we use to calculate the Fourier series $\sum_{n=1}^{\infty} b_{n} \sin \frac{n\pi x}{L}$?
(A) $u(x, 0)$ (B) $u(x, 0) - 2$ (C) $u(x, 0) - 2x$ (D) $u(x, 0) + 2x$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:
- $u_t = Du_{xx}$ u(0,t) = au(L,t) = bu(x,0) = f(x) $v(x,t) = u(x,t) - \left(a + \frac{b-a}{L}x\right)$ $\begin{cases} v_t = u_t \\ v_{xx} = u_{xx} \end{cases} \} \Rightarrow v_t = Dv_{xx}$ v(0,t) = u(0,t) - a = 0v(L,t) = u(L,t) - b = 0 $v(x,0) = u(x,0) - \left(a + \frac{b-a}{L}x\right)$
 - Recall rate of change is proportional to curvature so bumps get ironed out.

- v(x,t) satisfies the Diffusion Eq with homogeneous Dirichlet BCs and a new IC.
- General trick: define v=u-SS and find v as before.