Today

- Summary of steps for solving the Diffusion Equation with homogeneous Dirichlet or Neumann BCs using Fourier Series.
- Nonhomogeneous BCs
- Mixed Dirichlet/Neumann BCs
- End-of-term info:
- Don't forget to complete the online teaching evaluation survey.
- Next Thursday, two-stage review (optionally for 2/50 exam points).
- Office hours during exams TBA but sometime Apr 15/16/27.

Using Fourier Series to solve the Diffusion Equation

- Steps to solving the PDE:
- Determine the eigenfunctions for the problem (look at BCs).
- Represent the IC $u(x, 0)=f(x)$ by a sum of eigenfunctions (Fourier series).
- Write down the solution by inserting $\mathrm{e}^{\lambda t}$ into each term of the FS.
$u_{t}=D u_{x x} \quad \longrightarrow$ PDE determines all possible eigenfunctions.
$\left.\frac{d u}{d x}\right|_{x=0, L}=0$
$\longrightarrow B C s$ select a subset of the eigenfunctions.
$u(x, 0)=f(x) \quad \longrightarrow$ IC is satisfied by adding up eigenfunctions.

Using Fourier Series to solve the Diffusion Equation

$u_{t}=D u_{x x}$
\longrightarrow PDE determines all possible eigenfunctions.
Let's look for all possible eigenfunctions:
$D v_{x x}(x)=\lambda v(x)$
Case I: $\lambda<0 . \quad v_{\lambda}(x)=\cos \left(\sqrt{\frac{-\lambda}{D}} x\right)$ and $w_{\lambda}(x)=\sin \left(\sqrt{\frac{-\lambda}{D}} x\right)$
For each value of $\lambda<0$, these are both eigenfunctions.
Case II: $\lambda=0 . \quad v_{x x}=0 \Rightarrow v_{x}=C_{1} \Rightarrow v(x)=C_{1} x+C_{2}$
The $\lambda=0$ eigenfunctions are therefore $v(x)=1$ and $v(x)=x$.
These do not decay with time so they form the steady state.
Case III: $\lambda>0 . \quad v_{\lambda}(x)=e^{\sqrt{\frac{\lambda}{D}} x}$ and $w_{\lambda}(x)=e^{-\sqrt{\frac{\lambda}{D}} x}$
These don't satisfy any BCs so we'll drop this case.

Using Fourier Series to solve the Diffusion Equation

$u_{t}=D u_{x x}$ $\left.\frac{d u}{d x}\right|_{x=0, L}=0$
Case I: $\lambda<0 . \quad v_{\lambda}(x)=\cos \left(\sqrt{\frac{-\lambda}{D}} x\right)$ and $w_{\lambda}(x)=\sin \left(\sqrt{\frac{-\lambda}{D}} x\right)$
The BC at $\mathrm{x}=0$ only works for $\mathrm{v}_{\lambda}(\mathrm{x})$ and the BC at $\mathrm{x}=\mathrm{L}$ only works for certain λ, in particular $\lambda=-n^{2} \pi^{2} D / L^{2}$.

Case II: $\boldsymbol{\lambda}=0$. $v(x)=1$ and $v(x) \leq x$
Represent IC $\mathrm{u}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x})$ by $u(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}$
$u(x, t)=\frac{a_{0}}{2} \underset{\mathrm{e}^{\mathrm{ot}}}{ }+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} D t / L^{2}} \cos \frac{n \pi x}{L}$
<-- Steady state is constant term, that is the average value of $f(x)$!

Using Fourier Series to solve the Diffusion Equation

$u_{t}=D u_{x x} \quad \longrightarrow$ PDE determines all possible eigenfunctions.
$u(0, t)=u(2, t)=0 \longrightarrow$ BCs select a subset of the eigenfunctions.
Case I: $\lambda<0 . \quad v_{\lambda}(x)=\operatorname{eos}\left(\sqrt{\frac{-\lambda}{D}} x\right)$ and $w_{\lambda}(x)=\sin \left(\sqrt{\frac{-\lambda}{D}} x\right)$
The BC at $\mathrm{x}=0$ only works for $\mathrm{w}_{\lambda}(\mathrm{x})$ and the BC at $\mathrm{x}=\mathrm{L}$ only works for certain λ, in particular $\lambda=-n^{2} \pi^{2} D / L^{2}$.

Case II: $\lambda=0 . v(x)=1$ and $v(x)=x$
Represent IC $u(x, 0)=f(x)$ by $u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} D t / L^{2}} \sin \frac{n \pi x}{L}
$$

Using Fourier Series to solve the Diffusion Equation

$u_{t}=4 u_{x x}$
$\left.\frac{d u}{d x}\right|_{x=0,2}=0$
Write down the solution to this IVP.
$u(x, 0)=\sin \frac{3 \pi x}{2}$
(A) $u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}$
\longleftarrow doesn't satisfy IC.
(B) $u(x, t)=e^{-9 \pi^{2} t} \sin \frac{3 \pi x}{2}$
\longleftarrow don't satisfy BCs.
(C) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \sin \frac{n \pi x}{2} d x
$$

$\leadsto(\mathrm{D}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}$

$$
a_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \cos \frac{n \pi x}{2} d x
$$

...with nonhomogeneous boundary conditions

$u_{t}=D u_{x x}$
$u(0, t)=0$
$u(2, t)=4$
\longrightarrow Nonhomogeneous BCs
Case I: $\lambda<0 . \quad v_{\lambda}(x)=\operatorname{eos}\left(\sqrt{\frac{-\lambda}{D}} x\right)$ and $w_{\lambda}(x)=\sin \left(\sqrt{\frac{-\lambda}{D}} x\right)$
The BC at $\mathrm{x}=0$ only works for $\mathrm{w}_{\lambda}(\mathrm{x})$ and the BC at $\mathrm{x}=\mathrm{L}$ "almost" works for certain λ, in particular $\lambda=-n^{2} \pi^{2} D / L^{2}$.

Case II: $\boldsymbol{\lambda}=0 . v(x)=\mathrm{I}$ and $v(x)=2 x$
Ultimately, we want $u(x, t)=2 x+\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} D t / L^{2}} \sin \frac{n \pi x}{L}$
What function do we use to calculate the Fourier series $\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$?
(A) $u(x, 0)$
(B) $u(x, 0)-2$
(C) $u(x, 0)-2 x$
(D) $u(x, 0)+2 x$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& \begin{array}{l}
u_{t}=D u_{x x} \\
u(0, t)=a
\end{array} \\
& \begin{array}{ll}
u(L, t)=b & \text { Recall - rate of } c \\
u(x, 0)=f(x) & \text { proportional to } \\
\text { bumps get irone }
\end{array} \\
& v(x, t)=u(x, t)-\left(a+\frac{b-a}{L} x\right) \\
& \left.\begin{array}{l}
v_{t}=u_{t} \\
v_{x x}=u_{x x}
\end{array}\right\} \Rightarrow v_{t}=D v_{x x} \\
& v(0, t)=u(0, t)-a=0 \\
& v(L, t)=u(L, t)-b=0 \\
& v(x, 0)=u(x, 0)-\left(a+\frac{b-a}{L} x\right)
\end{aligned}
$$

- $\mathrm{v}(\mathrm{x}, \mathrm{t})$ satisfies the Diffusion Eq with homogeneous Dirichlet BCs and a new IC.
- General trick: define v=u-SS and find v as before.

