Today

- Finish up undetermined coefficients
- Physics applications - mass springs
- Undamped, over/under/critically damped oscillations

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t$
(B) $y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E$
(C) $y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right)$
(D) $y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F$
(E) Don't know / still thinking.

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
- What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& y_{p}(t)=A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& y_{p}(t)=A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

For each wrong answer, for what DE is it the correct form?

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } \begin{aligned}
y_{p}(t) & =\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
\text { (B) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t}
\end{aligned} \\
& \text { (C) } \begin{aligned}
y_{p}(t)=\left(A t^{3}+B t^{2}\right. & +C t) e^{2 t} \\
& \quad+\left(D t^{3}+E t^{2}+F t\right) e^{-2 t}
\end{aligned} \\
& \text { (D) } y_{p}(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
& \text { (B) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& \text { (C) } \begin{aligned}
y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& +\left(D t^{3}+E t^{2}+F t\right) e^{-2 t} \\
\text { (D) } y_{p}(t) & =\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t}
\end{aligned}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients (3.5)

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
\text { (A) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
\text { (B) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
\text { (C) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& +\left(D t^{3}+E t^{2}+F t\right) e^{-2 t} \\
\text { (D) } y_{p}(t) & =\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t} \\
y_{p}(t) & =t\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients (3.5)

$$
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x}
$$

Method of undetermined coefficients (3.5)

$$
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \quad y=e^{r x}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
y & =e^{r x}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
r^{2}+3 r & -10=0
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y=e^{r x} \\
r^{2}+3 r-10=0 \\
r=-5,2
\end{gathered}
$$

Method of undetermined coefficients (3.5)

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
r^{2}+3 r-10=0 \\
r=-5,2
\end{gathered}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
& -10 y_{p}(x)=r \quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=r \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
& -10 y_{p}(x)=r \quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=r \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
y_{p}(x)=A x^{2} e^{-5 x} \\
y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
-10 y_{p}(x)=\quad-10 A x^{2} e^{-5 x} \\
3 y_{p}^{\prime}(x)=\quad 6 A x e^{-5 x}-15 A x^{2} e^{-5 x} \\
y_{p}^{\prime \prime}(x)=\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0}
\end{gathered}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
&-10 y_{p}(x)=\quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=\quad 6 A x e^{-5 x}-15 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0 \quad=x^{2} e^{-5 x}}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
&-10 y_{p}(x)=\quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=\quad 6 A x e^{-5 x}-15 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0 \quad=x^{2} e^{-5 x}}
\end{aligned}
$$

Can't find A that works!

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
&-10 y_{p}(x)=\quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=\quad 6 A x e^{-5 x}-15 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0=x^{2} e^{-5 x}}
\end{aligned}
$$

Can't find A that works! Need 3 unknowns to match all 3 terms.

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x}
\end{gathered}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.
Need 3 unknowns but not including $e^{-5 x}$.

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.
Need 3 unknowns but not including $e^{-5 x}$.

$$
y_{p}(x)=A x^{3} e^{-5 x}+B x^{2} e^{-5 x}+C x e^{-5 x}
$$

Method of undetermined coefficients (3.5)

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.
Need 3 unknowns but not including $e^{-5 x}$.

$$
\begin{aligned}
y_{p}(x) & =A x^{3} e^{-5 x}+B x^{2} e^{-5 x}+C x e^{-5 x} \\
& =x\left(A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x}\right)
\end{aligned}
$$

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and \sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times($ part of the $g(t)$ family $)$, is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.
- For sums, group terms into families and include a term for each. You can even find a y_{p} for each family separately and add them up.

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.
- For sums, group terms into families and include a term for each. You can even find a y_{p} for each family separately and add them up.
- Works for products of functions - be sure to include the whole family!

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and \sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $t \times(g(t)$ family).
- If $t \times\left(\right.$ part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.
- For sums, group terms into families and include a term for each. You can even find a y_{p} for each family separately and add them up.
- Works for products of functions - be sure to include the whole family!
- Never include a solution to the h-problem as it won't survive L[]. Just make sure you aren't missing another term somewhere.

Method of undetermined coefficients (3.5)

Method of undetermined coefficients (3.5)

- Do lots of these problems and the trends will become clear.

Method of undetermined coefficients (3.5)

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.

Method of undetermined coefficients (3.5)

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember

Method of undetermined coefficients (3.5)

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember
- If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.

Method of undetermined coefficients (3.5)

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember
- If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.
- If you can't, your guess is most likely missing a term(s).

Applications - vibrations (3.7)

Mass-spring systems

Applications - vibrations (3.7)

Mass-spring systems

$$
m a=F
$$

Applications - vibrations (3.7)

Mass-spring systems

$$
E=\frac{1}{2} k\left(x-x_{0}\right)^{2}
$$

$$
m a=F
$$

Applications - vibrations (3.7)

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

Applications - vibrations (3.7)

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$$
m a=-k\left(x-x_{0}\right)
$$

Applications - vibrations (3.7)

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$$
m a=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}=-k\left(x-x_{0}\right)
$$

Applications - vibrations (3.7)

Mass-spring systems

$$
\begin{aligned}
& E=\frac{1}{2} k\left(x-x_{0}\right)^{2} \\
& F=-\frac{d E}{d x}=-k\left(x-x_{0}\right)
\end{aligned}
$$

$$
m a=F
$$

$$
m a=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}=-k\left(x-x_{0}\right)
$$

$$
m x^{\prime \prime}+k x=k x_{0}
$$

Applications - vibrations (3.7)

Applications - vibrations (3.7)

Molecular bonds

Applications - vibrations (3.7)

Molecular bonds

Applications - vibrations (3.7)
Molecular bonds

Applications - vibrations (3.7)

Molecular bonds

Applications - vibrations (3.7)

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations (3.7)

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations (3.7)

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations (3.7)

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations (3.7)

Solid mechanics

e.g. tuning fork, bridges, buildings

Applications - vibrations (3.7)

Solid mechanics

e.g. tuning fork, bridges, buildings
(归 (1)

$$
x^{\prime \prime}=-K x
$$

where K depends on the molecular details of the material and the cross-sectional geometry of the rod.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
m a=-k\left(x-x_{0}\right)-\gamma v
$$

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{aligned}
& m a=-k\left(x-x_{0}\right)-\gamma v \\
& m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime}
\end{aligned}
$$

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{aligned}
& m a=-k\left(x-x_{0}\right)-\gamma v \\
& m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
& m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0}
\end{aligned}
$$

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{gathered}
m a=-k\left(x-x_{0}\right)-\gamma v \\
m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0} \\
y=x-x_{0}
\end{gathered}
$$

shock absorber

Applications - vibrations (3.7)

- So far, no x' term so no exponential decay in the solutions.
- Dashpot - mechanical element that adds friction.
- sometimes an abstraction that accounts for energy loss.

$$
\begin{gathered}
m a=-k\left(x-x_{0}\right)-\gamma v \\
m x^{\prime \prime}=-k\left(x-x_{0}\right)-\gamma x^{\prime} \\
m x^{\prime \prime}+\gamma x^{\prime}+k x=k x_{0} \\
y=x-x_{0} \\
m y^{\prime \prime}+\gamma y^{\prime}+k y=0
\end{gathered}
$$

shock absorber

Applications - forced vibrations (3.8)

Applications - forced vibrations (3.8)

- light hitting a molecular bond

Applications - forced vibrations (3.8)

- light hitting a molecular bond

Applications - forced vibrations (3.8)

- light hitting a molecular bond

- pressure waves (sound) hitting a turning fork.

Applications - vibrations (3.7)

- Undamped mass spring

$$
m x^{\prime \prime}+k x=0
$$

Applications - vibrations (3.7)

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0
\end{gathered}
$$

Applications - vibrations (3.7)

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i
\end{gathered}
$$

Applications - vibrations (3.7)

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
\end{gathered}
$$

Applications - vibrations (3.7)

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \\
\omega_{0}=\sqrt{\frac{k}{m}}
\end{gathered}
$$

Applications - vibrations (3.7)

- Undamped mass spring

$$
\begin{gathered}
m x^{\prime \prime}+k x=0 \\
m r^{2}+k=0 \\
r= \pm \sqrt{\frac{k}{m}} i \\
x(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \\
\omega_{0}=\sqrt{\frac{k}{m}} \quad \begin{array}{l}
\text { • frequency } \\
\\
\quad \begin{array}{l}
\text { • increases with stiffness } \\
\\
\text { decreases with mass }
\end{array}
\end{array}
\end{gathered}
$$

Applications - vibrations (3.7)

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

Applications - vibrations (3.7)

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$2 \cos (3 t+\pi / 3)=$
(A) $2 \sin (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \cos (3 t)$
(B) $2 \sin (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \cos (3 t)$
(C) $2 \cos (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \sin (3 t)$
(D) $2 \cos (\pi / 3) \cos (3 t)+2 \sin (\pi / 3) \sin (3 t)$
(E) Don’t know / still thinking.

Applications - vibrations (3.7)

Trig identity reminders

$$
\begin{aligned}
& \sin (A+B)=\sin (A) \cos (B)+\cos (A) \sin (B) \\
& \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)
\end{aligned}
$$

$2 \cos (3 t+\pi / 3)=$

$$
\begin{aligned}
& 2 \cos (\pi / 3) \cos (3 t)-2 \sin (\pi / 3) \sin (3 t) \\
& =\cos (3 t)-\sqrt{3} \sin (3 t)
\end{aligned}
$$

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
$$

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\stackrel{4}{\cos (A-B)} \underset{\cos (A)}{\cos ^{4}(B)+\sin ^{3}(A) \sin (B)}
$$

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
4 \cos (2 t)+3 \sin (2 t)
$$

$$
\begin{aligned}
& \text { A } 2 \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right)
\end{aligned}
$$

> A 2
> $\cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)$
$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t))
\end{aligned}
$$

$$
\begin{aligned}
& 4 \quad \text { z } \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\begin{aligned}
& 4 \quad \text { Z } \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\begin{aligned}
& 4 \quad 2 \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:
- Example:

$$
\begin{aligned}
& 4 \cos (2 t)+3 \sin (2 t) \\
& \quad=5\left(\frac{4}{5} \cos (2 t)+\frac{3}{5} \sin (2 t)\right) \\
& \quad=5(\cos (\phi) \cos (2 t)+\sin (\phi) \sin (2 t)) \\
& \quad=5 \cos (2 t-\phi)
\end{aligned}
$$

$$
\frac{4}{\phi=0.9273}
$$

$(\cos (A), \sin (A))$ must lie on the unit circle. i.e. $\cos ^{2}(A)+\sin ^{2}(A)=1$.

$$
\begin{aligned}
& \text { A Zூ } \\
& \cos (A-B)=\cos (A) \cos (B)+\sin (A) \sin (B)
\end{aligned}
$$

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.
- Step 2 - Find the angle ϕ for which $\cos (\phi)=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}$

$$
\text { and } \sin (\phi)=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}
$$

Applications - vibrations (3.7)

- Converting from sum-of-sin-cos to a single cos expression:

$$
y(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Step 1 - Factor out $A=\sqrt{C_{1}^{2}+C_{2}^{2}}$.
- Step 2 - Find the angle ϕ for which $\cos (\phi)=\frac{C_{1}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}$

$$
\text { and } \sin (\phi)=\frac{C_{2}}{\sqrt{C_{1}^{2}+C_{2}^{2}}}
$$

- Step 3 - Rewrite the solution as $y(t)=A \cos \left(\omega_{0} t-\phi\right)$.

Applications - vibrations (3.7)

- Damped mass-spring

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \quad m, \gamma, k>0
$$

Applications - vibrations (3.7)

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \quad m, \gamma, k>0 \\
\Rightarrow m r^{2}+\gamma r+k=0
\end{gathered}
$$

Applications - vibrations (3.7)

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \quad m, \gamma, k>0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}
\end{gathered}
$$

Applications - vibrations (3.7)

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
\end{gathered}
$$

Applications - vibrations (3.7)

- Damped mass-spring

$$
\begin{gathered}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{\left.\frac{\sqrt{1-\frac{4 k m}{\gamma^{2}}}}{2}\right)}\right. \\
\begin{array}{c}
\text { smaller than } 1 \\
\text { or complex }
\end{array}
\end{gathered}
$$

Applications - vibrations (3.7)

- Damped mass-spring

$$
\begin{array}{cc}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & m, \gamma, k>0 \\
\Rightarrow \quad m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)}{\sum_{\substack{ }}^{\substack{\text { negative or } \\
\text { complex }}} \begin{array}{c}
\text { smaller than } 1 \\
\text { or complex }
\end{array}}
\end{array}
$$

Applications - vibrations (3.7)

- Damped mass-spring

$$
\begin{array}{cc}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & m, \gamma, k>0 \\
\Rightarrow m r^{2}+\gamma r+k=0 \\
r_{1,2}=-\frac{\gamma}{2 m} \pm \frac{\sqrt{\gamma^{2}-4 k m}}{2 m}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
\end{array}
$$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
(ii) $\frac{4 k m}{\gamma^{2}}=1$
(iii) $\frac{4 k m}{\gamma^{2}}>1$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
(ii) $\frac{4 k m}{\gamma^{2}}=1$
(iii) $\frac{4 k m}{\gamma^{2}}>1$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
(ii) $\frac{4 k m}{\gamma^{2}}=1$
$\Rightarrow \quad r_{1}=r_{2}, \exp$ and $t^{*} \exp$ decay (critically damped)
(iii) $\frac{4 k m}{\gamma^{2}}>1$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{ll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow \quad r_{1}=r_{2}, \exp \text { and } \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\alpha=-\frac{\gamma}{2 m}<0
$$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{lll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow r_{1}=r_{2}, \exp \text { and } \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\alpha=-\frac{\gamma}{2 m}<0 \Rightarrow \underset{\substack{\text { decaying oscillations } \\ \text { (under damped }-\gamma \text { small) }}}{\text { s. }}
$$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{lll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow r_{1}=r_{2}, \exp \text { and } \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\begin{aligned}
& \alpha=-\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)
\end{aligned}
$$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{ll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow \quad r_{1}=r_{2}, \exp \text { and } \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\begin{aligned}
\alpha= & -\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
\quad & x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) \\
\beta= & \sqrt{\frac{4 k m}{\gamma^{2}}-1}
\end{aligned}
$$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
$\begin{array}{ll}\text { (ii) } \frac{4 k m}{\gamma^{2}}=1 & \Rightarrow \quad r_{1}=r_{2}, \exp \text { and } \\ \text { (iii) } \frac{4 k m}{\gamma^{2}}>1 & \Rightarrow r=\alpha \pm \beta i\end{array}$

$$
\begin{aligned}
& \alpha=\left.-\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array}\right) \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) \\
& \beta=\sqrt{\frac{4 k m}{\gamma^{2}}-1} \longleftarrow \text { called pseudo-frequency }
\end{aligned}
$$

Applications - vibrations (3.7)

- Damped oscillations

$$
r_{1,2}=\frac{\gamma}{2 m}\left(-1 \pm \sqrt{1-\frac{4 k m}{\gamma^{2}}}\right)
$$

(i) $\frac{4 k m}{\gamma^{2}}<1$
$\Rightarrow \quad r_{1}, r_{2}<0$, exponential decay only (over damped - γ large)
(ii) $\frac{4 k m}{\gamma^{2}}=1$
$\Rightarrow \quad r_{1}=r_{2}$, exp and $t^{\star} \exp$ decay (critically damped)
(iii) $\frac{4 k m}{\gamma^{2}}>1 \Rightarrow r=\alpha \pm \beta i$

For graphs, see:

$$
\begin{aligned}
\alpha= & -\frac{\gamma}{2 m}<0 \Rightarrow \begin{array}{c}
\text { decaying oscillations } \\
\text { (under damped }-\gamma \text { small) }
\end{array} \\
& x(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)
\end{aligned} \quad \begin{aligned}
& \uparrow=\sqrt{\frac{4 k m}{\gamma^{2}}-1} \longleftarrow \text { called pseudo-frequency }
\end{aligned}
$$ https://www.desmos.com/ calculator/psy5r8hpln

