
Today

• Teaching evals (10 min)

• Diffusion equation examples and summary

• Please fill out poll on Facebook to influence office hour and review 
dates.
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Nonhomogeneous boundary conditions

• How would you solve this one?

ut = 4uxx

u(x, 0) = cos
3πx

2

du

dx

����
x=0,2

= −2



Review of solutions to the Diffusion Equation

u(x, 0) = f(x)

ut = Duxx

u(0, t) = u(L, t) = 0
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• All coefficients will be non-zero. Not particularly useful for solving the BCs.
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Review of solutions to the Diffusion Equation

• Cosine coefficients will be zero because f(x) is odd about x=0 and cosine is even. 
Useful for solving the Diffusion equation with Dirichlet BCs.
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• Adding the linear function to the usual solution to the Dirichlet problem ensures that the 
BCs are satisfied without changing the fact that it satisfies the PDE. 
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