
Today

• Summary of 2x2 systems

• Non-homogeneous two-tank example

• Intro to Laplace transforms
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Summary - homogeneous 2x2 systems

Repeated evalue cases:

λ<0, only one evector.

λ<0, two indep. evectors.

λ>0, only one evector.

λ>0, two indep. evectors.

One zero evalue (singular matrix):

λ1=0, λ2<0, λ1=0, λ2>0,



Nonhomogeneous case - example

• Salt water flows into a tank holding 10 L of water at a rate of 1 L/min 
with a concentration of 200 g/L. The well-mixed solution flows from that 
tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe 
takes the solution in the second tank back into the first at a rate of 2 L/
min. Finally, solution drains out of the second tank at a rate of 1 L/min.

•  Write down a system of equations in matrix form for the mass of salt in 
each tank.
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Nonhomogeneous case - example

• A “Method of undetermined coefficients” similar to what we saw for 
second order equations can be used for systems. 

• For this course, I’ll only test you on constant nonhomogeneous terms 
(like the previous example).
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• We know how to solve                                              when          is 
polynomial, exponential, trig.

• In applications,          is often “piece-wise continuous” meaning that it 
consists of a finite number of pieces with jump discontinuities in 
between. For example,

• These can be handled by previous techniques (modified) but it isn’t 
pretty (solve from t=0 to t=10, use y(10) as the IC for a new problem 
starting at t=10).
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Laplace transforms - intro (6.1)

• Motivation for Laplace transforms - example RLC circuit

• Resistor, inductor and capacitor in series

• If v(t) comes from radio waves then                                   and the 
circuit is called a radio receiver.

• For                                                   , the circuit has a switch that gets 

flipped at t=10. 

I ��(t) +
R

L
I �(t) +

1
LC

I(t) = v(t)

v(t) = A cos(ωt)

v(t) =
�

1 0 < t < 10
0 t ≥ 10
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Laplace transforms - intro (6.1)

• Instead of not-so-pretty techniques, we use Laplace transforms.

• Idea:

Unknown y(t) that 
satisfies some ODE

Found y(t)
solve ODE

Found Y(s)
solve algebraic eqUnknown Y(s) that 

satisfies an algebraic 
equation

Transform y(t) 
and the ODE

Invert the 
transform

• Laplace transform of y(t): L{y(t)} = Y (s) =
� ∞

0
e−sty(t) dt
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