Today

- Fourier Series examples - even and odd extensions, other symmetries
- Using Fourier Series to solve the Diffusion Equation

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

What is L?

Examples - calculate the Fourier Series

What is L? $L=1$

Examples - calculate the Fourier Series

What is L? $L=1$

Examples - calculate the Fourier Series

What is L? $L=1$

Examples - calculate the Fourier Series

What is L? $L=1$

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \\
& a_{n}=\frac{1}{n^{2}} \pi^{2}\left((-1)^{n}-1\right) \\
& b_{n}=\frac{(-1)^{n+1}}{n \pi}
\end{aligned}
$$

Examples - calculate the Fourier Series

What is L? $L=1$

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \\
& a_{n}=\frac{1}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \\
& b_{n}=\frac{(-1)^{n+1}}{n \pi}
\end{aligned}
$$

$$
\begin{aligned}
f(x)=\frac{1}{4} & +\sum_{n=1}^{\infty} \frac{1}{n^{2} \pi^{2}} \cos n \pi x \\
& +\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \pi} \sin n \pi x
\end{aligned}
$$

Examples - calculate the Fourier Series

What is L? $L=1$

$$
\begin{aligned}
& a_{0}=\frac{1}{2} \\
& a_{n}=\frac{1}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \\
& b_{n}=\frac{(-1)^{n+1}}{n \pi}
\end{aligned}
$$

$$
\begin{aligned}
f(x)=\frac{1}{4} & +\sum_{n=1}^{\infty} \frac{1}{n^{2} \pi^{2}} \cos n \pi x \\
& +\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \pi} \sin n \pi x \quad \text { for } x \neq 0,2 .
\end{aligned}
$$

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

What is L?

Examples - calculate the Fourier Series

What is L? $L=2$

Examples - calculate the Fourier Series

What is L? $L=2$

Examples - calculate the Fourier Series

What is L? $L=2$

Examples - calculate the Fourier Series

What is L? $L=2$

$$
g(x)=\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

Examples - calculate the Fourier Series

What is L? $L=2$

$$
g(x)=\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}=\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-) \pi x}{L}
$$

Examples - calculate the Fourier Series

What is L? $L=2$

$$
\begin{aligned}
g(x)=\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & =\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-1) \pi x}{L} \\
& =1-\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2-1)^{2}} \cos \frac{(k k-1) \pi x}{2}
\end{aligned}
$$

Examples - calculate the Fourier Series

What is L? $L=2$

$$
\begin{aligned}
g(x)=\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & =\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-1) \pi x}{L} \\
& =1-\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos \frac{(2 k-1) \pi x}{2} \quad \text { for all } x .
\end{aligned}
$$

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

What is L?

Examples - calculate the Fourier Series

What is L? $L=2$

Examples - calculate the Fourier Series

What is L? $L=2$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{n}=0 \\
& b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
\end{aligned}
$$

What is L? $L=2$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{n}=0 \\
& b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
\end{aligned}
$$

What is L? $L=2$

$$
h(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{2}
$$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{n}=0 \\
& b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
\end{aligned}
$$

What is L? $L=2$

$$
h(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{2}
$$

for $x \neq-2,2$.

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

What is L?

Examples - calculate the Fourier Series

What is $L ? L=2$

Examples - calculate the Fourier Series

What is $L ? L=2$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

What is L ? $L=2$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] \\
& b_{1}=-\frac{2}{n \pi}(-1)^{n}
\end{aligned}
$$

What is L ? $L=2$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] \\
& b_{1}=-\frac{2}{n \pi}(-1)^{n}
\end{aligned}
$$

What is $L ? L=2$

$$
\begin{aligned}
k(x)=\frac{1}{2} & +\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \cos \frac{n \pi x}{2} \\
& +\sum_{n=1}^{\infty} \frac{\pi}{n \pi}(-1)^{n+1} \sin \frac{n \pi x}{2}
\end{aligned}
$$

Examples - calculate the Fourier Series

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=\frac{2}{n^{2} \pi^{2}}\left[(-1)^{n}-1\right] \\
& b_{1}=-\frac{2}{n \pi}(-1)^{n}
\end{aligned}
$$

What is L ? $L=2$

$$
\begin{aligned}
k(x)=\frac{1}{2} & +\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \cos \frac{n \pi x}{2} \\
& +\sum_{n=1}^{\infty} \frac{2}{n \pi}(-1)^{n+1} \sin \frac{n \pi x}{2} \quad \text { for } x \neq-2,2
\end{aligned}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{n}\right)=\frac{\sqrt{x_{0}}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{n}\right)_{0}=\frac{\mathbb{N}_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}\left(x_{\infty}\right)_{0} \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{\boldsymbol{N}}\right)_{0} \frac{\sqrt{n} x_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}\left(x_{0} \operatorname{co}^{0} \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}\right. & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

The Diffusion Equation

$c(x, t)$ is linear mass density of ink in a long narrow tube.
$Q_{a b}(t)=\int_{a}^{b} c(x, t) d x$

The Diffusion Equation

$\mathrm{c}(\mathrm{x}, \mathrm{t})$ is linear mass density of ink in a long narrow tube.
$Q_{a b}(t)=\int_{a}^{b} c(x, t) d x$

The Diffusion Equation

$c(x, t)$ is linear mass density of ink in a long narrow tube.
$Q_{a b}(t)=\int_{a}^{b} c(x, t) d x$
$\frac{d Q_{a b}}{d t}(t)=\frac{d}{d t} \int_{a}^{b} c(x, t) d x=\int_{a}^{b} \frac{\partial}{\partial t} c(x, t) d x$
Define the flux J_{a} to be the amount of mass crossing the line $x=a(+-->)$.

$$
\frac{d Q_{a b}}{d t}(t)=-J_{b}+J_{a}
$$

Need a model for flux, here, chemical diffusion: $\quad J_{a}=-\left.D \frac{\partial c}{\partial x}\right|_{x=a}$

$$
\begin{aligned}
& \left.\frac{d Q_{a b}}{d t}(t)=-J_{b}+J_{a}=\left.D \frac{\partial c}{\partial x}\right|_{x=b}-\left.D \frac{\partial c}{\partial x}\right|_{x=a}=\left.D \frac{\partial c}{\partial x}\right|_{a} ^{b} \right\rvert\, x=a \\
& \int_{a}^{b} \frac{\partial}{\partial t} c(x, t) d x=\int_{a}^{b} D \frac{\partial^{2} c}{\partial x^{2}} d x \quad \Rightarrow \quad \frac{\partial}{\partial t} c(x, t)=D \frac{\partial^{2}}{\partial x^{2}} c(x, t)
\end{aligned}
$$

The Diffusion Equation

$c(x, t)$ is linear mass density of ink in a long narrow tube.
$Q_{a b}(t)=\int_{a}^{b} c(x, t) d x$
$\frac{d Q_{a b}}{d t}(t)=\frac{d}{d t} \int_{a}^{b} c(x, t) d x=\int^{b} \frac{\partial}{\partial t} c(x, t) d x$
Define the flux J_{a} to The Diffusion Equation pssing the line $\mathrm{x}=\mathrm{a}(+-->)$.

$$
\frac{d Q_{a b}}{d t}(t)=-J_{b}+\quad \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

$\frac{d Q_{a b}}{d t}(t)=-J_{b}+J_{a}=\left.D \frac{\partial c}{\partial x}\right|_{x=b}-\left.D \frac{\partial c}{\partial x}\right|_{x=a}=\left.D \frac{\partial c}{\partial x}\right|_{a} ^{b}$
$\int_{a}^{b} \frac{\partial}{\partial t} c(x, t) d x=\int_{a}^{b} D \frac{\partial^{2} c}{\partial x^{2}} d x \quad \Rightarrow \quad \frac{\partial}{\partial t} c(x, t)=D \frac{\partial^{2}}{\partial x^{2}} c(x, t)$

The Diffusion Equation

$$
\begin{aligned}
& \text { The Diffusion Equation } \\
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& c(x, t)=a e^{b t} \sin (w x)
\end{aligned}
$$

The Diffusion Equation

$$
\begin{gathered}
\begin{array}{c}
\begin{array}{c}
\text { The Diffusion Equation } \\
d t \\
d c \\
d x^{2}
\end{array} \\
c(x, t)=a e^{b t} \sin (w x)
\end{array} \\
\frac{\partial c}{\partial t}=a b e^{b t} \sin (w x)
\end{gathered}
$$

The Diffusion Equation

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array}\right.} \\
c(x, t)=a e^{b t} \sin (w x) \\
\frac{\partial c}{\partial t}=a b e^{b t} \sin (w x) \quad D \frac{\partial^{2} c}{\partial x^{2}}=-D a w^{2} e^{b t} \sin (w x)
\end{gathered}
$$

The Diffusion Equation

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array}\right.} \\
c(x, t)=a e^{b t} \sin (w x) \\
\frac{\partial c}{\partial t}=a b e^{b t} \sin (w x) \quad D \frac{\partial^{2} c}{\partial x^{2}}=-D a w^{2} e^{b t} \sin (w x) \\
c(x, t)=a e^{-w^{2} D t} \sin (w x)
\end{gathered}
$$

The Diffusion Equation

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array}\right.} \\
c(x, t)=a e^{b t} \sin (w x) \\
\frac{\partial c}{\partial t}=a b e^{b t} \sin (w x) \quad D \frac{\partial^{2} c}{\partial x^{2}}=-D a w^{2} e^{b t} \sin (w x) \\
c(x, t)=a e^{-w^{2} D t} \sin (w x)
\end{gathered}
$$

Still need to determine a and w. Need to impose other conditions:

The Diffusion Equation

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array}\right.} \\
c(x, t)=a e^{b t} \sin (w x) \\
\frac{\partial c}{\partial t}=a b e^{b t} \sin (w x) \quad D \frac{\partial^{2} c}{\partial x^{2}}=-D a w^{2} e^{b t} \sin (w x) \\
c(x, t)=a e^{-w^{2} D t} \sin (w x)
\end{gathered}
$$

Still need to determine a and w. Need to impose other conditions:

- A time derivative requires an initial condition $c(x, 0)$.

The Diffusion Equation

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array}\right.} \\
c(x, t)=a e^{b t} \sin (w x) \\
\frac{\partial c}{\partial t}=a b e^{b t} \sin (w x) \quad D \frac{\partial^{2} c}{\partial x^{2}}=-D a w^{2} e^{b t} \sin (w x) \\
c(x, t)=a e^{-w^{2} D t} \sin (w x)
\end{gathered}
$$

Still need to determine a and w. Need to impose other conditions:

- A time derivative requires an initial condition $c(x, 0)$.
- Two space derivatives require two boundary conditions $c(0, t)$ and $c(L, t)$.

The Diffusion Equation

The Diffusion Equation

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

An initial condition specifies where all the mass is initially: $c(x, 0)=d(x)$.

The Diffusion Equation

The Diffusion Equation

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

An initial condition specifies where all the mass is initially: $c(x, 0)=d(x)$.

The Diffusion Equation

The Diffusion Equation

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

An initial condition specifies where all the mass is initially: $c(x, 0)=d(x)$.

The Diffusion Equation

The Diffusion Equation

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

An initial condition specifies where all the mass is initially: $c(x, 0)=d(x)$.

A common boundary condition states that the concentration is forced to be zero at the end point(s) (infinite reservoir): $c(0, t)=0=c(L, t)$.

The Diffusion Equation

The Diffusion Equation

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

An initial condition specifies where all the mass is initially: $c(x, 0)=d(x)$.

A common boundary condition states that the concentration is forced to be zero at the end point(s) (infinite reservoir): $c(0, t)=0=c(L, t)$.

The Diffusion Equation

$$
\begin{aligned}
& \quad \begin{array}{|}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array} \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0
\end{aligned}
$$

The Diffusion Equation

$$
\begin{aligned}
& \quad \begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array} \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0 \\
& c(0, t)=a \sin (0)=0
\end{aligned}
$$

The Diffusion Equation

$$
\begin{aligned}
& \quad \begin{array}{|}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array} \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0 \\
& c(0, t)=a \sin (0)=0 \quad<-- \text { would not have happened with cosine! }
\end{aligned}
$$

The Diffusion Equation

$$
\begin{aligned}
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0 \\
& c(0, t)=a \sin (0)=0 \quad<-- \text { would not have happened with cosine! } \\
& c(L, t)=a \sin (w L)=0
\end{aligned}
$$

The Diffusion Equation

$$
\begin{aligned}
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0 \\
& c(0, t)=a \sin (0)=0 \quad<-- \text { would not have happened with cosine! } \\
& c(L, t)=a \sin (w L)=0 \\
& w L=n \pi
\end{aligned}
$$

The Diffusion Equation

$$
\begin{aligned}
& \text { The Diffusion Equation } \\
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0 \\
& c(0, t)=a \sin (0)=0 \quad<-- \text { would not have happened with cosine! } \\
& c(L, t)=a \sin (w L)=0 \\
& w L=n \pi \\
& w=\frac{n \pi}{L}
\end{aligned}
$$

The Diffusion Equation

$$
\begin{aligned}
& \quad \left\lvert\, \begin{array}{c}
\text { The Diffusion Equation } \\
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
\end{array}\right. \\
& c(x, t)=a e^{-w^{2} D t} \sin (w x) \\
& c(0, t)=0, c(L, t)=0 \\
& c(0, t)=a \sin (0)=0 \quad<-- \text { would not have happened with cosine! } \\
& c(L, t)=a \sin (w L)=0 \\
& w L=n \pi \quad c_{n}(x, t)=a e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi}{L} x\right)
\end{aligned}
$$

