
Today

• Fourier Series examples - even and odd extensions, other symmetries

• Using Fourier Series to solve the Diffusion Equation
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Even and odd extensions

• For a function f(x) defined on [0,L], the even extension of f(x) is the 
function

fe(x) =
�

f(x) for 0 ≤ x ≤ L,
f(−x) for − L ≤ x < 0.

• For a function f(x) defined on [0,L], the odd extension of f(x) is the 
function

fo(x) =
�

f(x) for 0 ≤ x ≤ L,
−f(−x) for − L ≤ x < 0.
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The Diffusion Equation
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a
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a b

c(x,t) is linear mass density of ink in a long narrow tube.
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