
Today

- Comment on pre-lecture problems
- Finish up with integrating factors
- The structure of solutions
- Separable equations

Pre-lecture assignment comments

$$\frac{d}{dt} (t^2 y(t)) =$$
(A) $2t \frac{dy}{dt}$
(B) $t^2 \frac{dy}{dt}$
(C) $2ty$
(D) $t^2 \frac{dy}{dt} + 2ty$

Friday, 9 January, 15

$$\frac{d}{dt} (t^2 y(t)) =$$
(A) $2t \frac{dy}{dt}$
(B) $t^2 \frac{dy}{dt}$
(C) $2ty$
(D) $t^2 \frac{dy}{dt} + 2ty$

• Given that
$$\frac{d}{dt}(t^2y(t)) = t^2\frac{dy}{dt} + 2ty$$

• if you're given the equation
$$t^2 \frac{dy}{dt} + 2ty = 0$$

arbitrary constant that appeared at an integration step

• you can rewrite is as $\frac{d}{dt}(t^2y(t)) = 0$

• so the solution is $t^2y(t) = C$ or equivalently $y(t) = \frac{C}{t^2}$.

• Solve the equation $t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$ (not brute force checking).

(A)
$$y(t) = -\cos(t) + C$$

(B) $y(t) = \frac{C - \cos(t)}{t^2}$
(C) $y(t) = \sin(t) + C$
(D) $y(t) = -\frac{1}{t^2}\cos(t)$
(E) Don't know.

• Solve the equation $t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$ (not brute force checking).

(A)
$$y(t) = -\cos(t) + C$$

(B) $y(t) = \frac{C - \cos(t)}{t^2}$ general solution
(although that's not
obvious)
(C) $y(t) = \sin(t) + C$
(D) $y(t) = -\frac{1}{t^2}\cos(t)$ a particular solution
(E) Don't know.

Initial conditions (IC) and initial value problems (IVP)

• An initial condition is an added constraint on a solution.

• e.g. Solve
$$t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$$
 subject to the IC $y(\pi) = 0$.
(A) $y(t) = -\frac{C + \cos(\pi)}{\pi^2}$
(B) $y(t) = -\frac{1 - \cos(t)}{t^2}$
(C) $y(t) = \frac{1 + \cos(t)}{t^2}$
(D) $y(t) = -\frac{1 + \cos(t)}{t^2}$
(E) Don't know.

• An Initial Value Problem (IVP) is a ODE together with an IC.

• What's the integrating factor?

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$
$$t^2\frac{dy}{dt} + 4tu(t) - \frac{1}{2} \qquad \rightarrow f(t) = t^2$$

In class, I referred to these f(t) functions as the integrating factors. This is incorrect. They are functions that you can multiply the ORIGINAL equation by to get a perfect "product rule" form. But an integrating factor is defined as the function that you would multiply the "normalized" equation by to get the "product rule" form. By "normalized", I mean after dividing through by the coefficient on dy/dt. So for the first example above, the integrating factor would be $I(t)=t^2$ and the equation you multiply it through is dy/dt + 2/t y = 1/t.

$$\frac{dy}{dt} + g'(t)y(t) = 0 \qquad \rightarrow f(t) = e^{g(t)}$$

• General case - all first order linear ODEs can be written in the form

$$\frac{dy}{dt} + p(t)y = q(t)$$

• The appropriate integrating factor is $e^{\int p(t)dt}$.

• The equation can be rewritten
$$\frac{d}{dt}\left(e^{\int p(t)dt}y\right) = e^{\int p(t)dt}q(t)$$
 which

is solvable provided you can find the antiderivative of the right hand side.

$$e^{\int p(t)dt}y(t) = \int e^{\int p(t)dt}q(t)dt + C$$
$$y(t) = e^{-\int p(t)dt} \int e^{\int p(t)dt}q(t)dt + Ce^{-\int p(t)dt}$$

The structure of solutions

• When the equation is of the form (called homogeneous)

$$\frac{dy}{dt} + p(t)y = 0$$

• the solution is

$$y(t) = C\mu(t)^{-1}$$

• where

$$\mu(t) = \exp\left(\int p(t)dt\right)$$

• is the integrating factor.

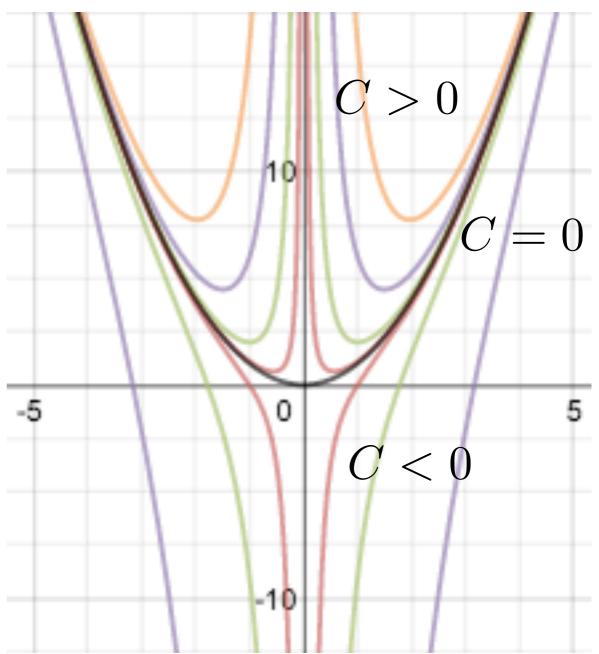
The structure of solutions

• When the equation is of the form (called nonhomogeneous)

$$\frac{dy}{dt} + p(t)y = q(t)$$

- the solution is $y(t) = k(t) + C\mu(t)^{-1}$
- where k(t) involves no arbitrary constants.
- Think about this expression as $y(t) = y_p(t) + y_h(t)$
- Directly analogous to solving the vector equations $A\overline{x}=0$ and $A\overline{x}=b$.

Examples

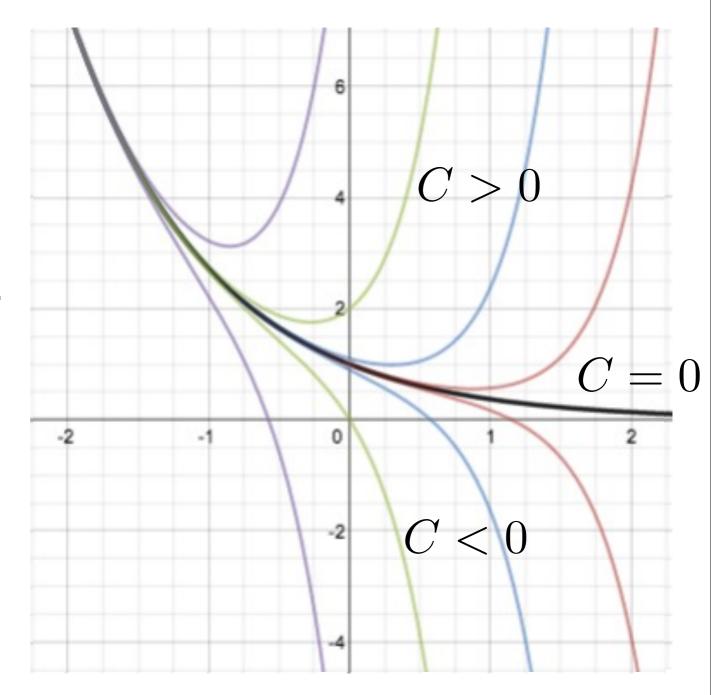

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C\frac{1}{t^2}$$

 Steps: divide through by t, calculate I(t), take antiderivatives, solve for y. Or shortcut.


Examples

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

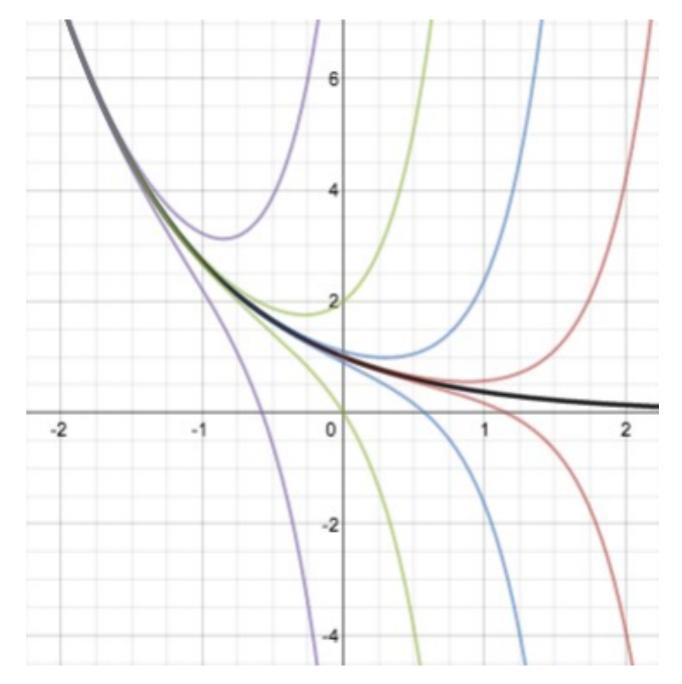
• and plot a few of the integral curves.

$$y(t) = e^{-t} + Ce^{3t}$$

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

• depending on C, how many different results are possible for


$$\lim_{t\to\infty}y(t)?$$

(A) 0

(B) 1

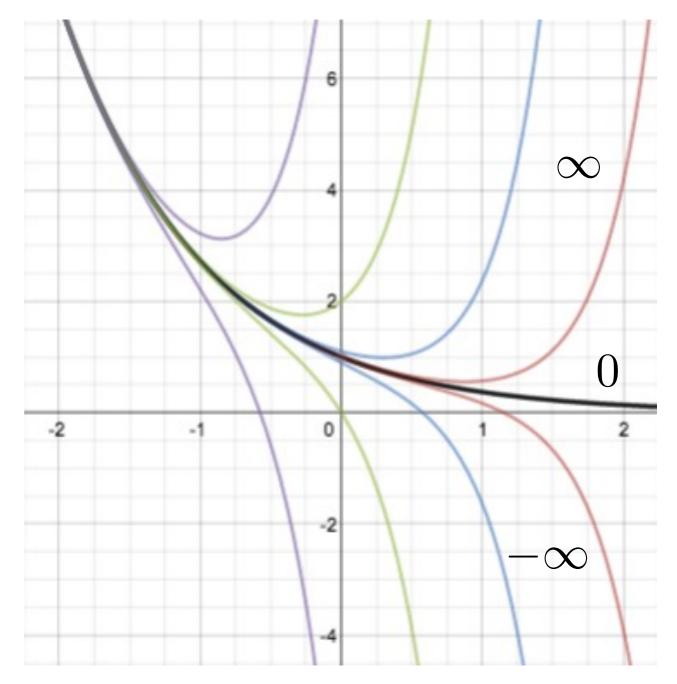
(C) 2

(D) 3 (E) Don't know.

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

• depending on C, how many different results are possible for

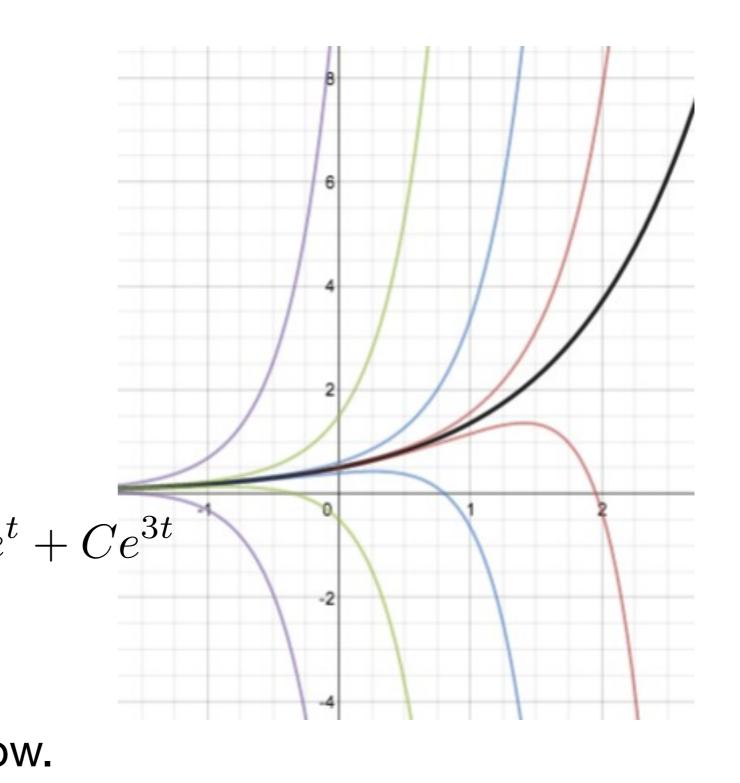

$$\lim_{t\to\infty}y(t)?$$

(A) 0

(B) 1

(C) 2

(D) 3 (E) Don't know.

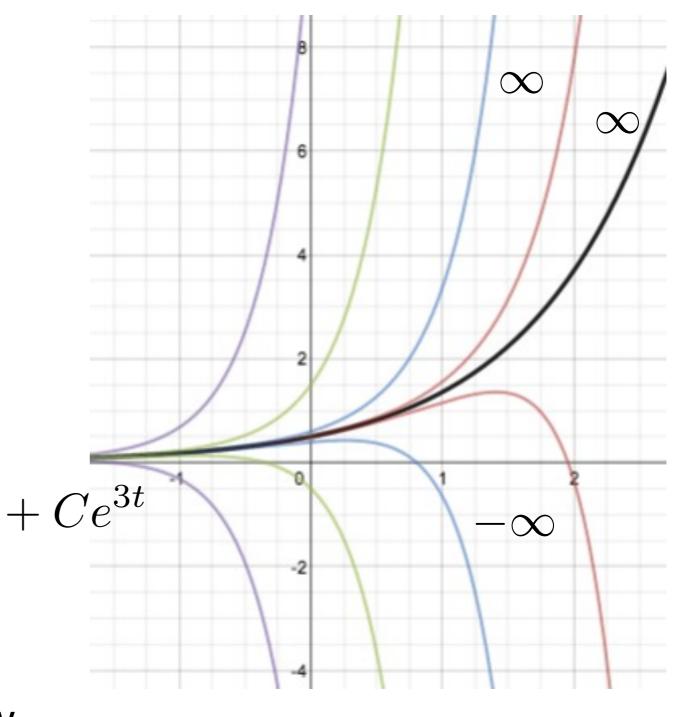

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -e^t$$

 depending on C, how many different results are possible for

$$\lim_{t \to \infty} y(t)$$
 ?

(A) 0 (B) 1 (C) 2 (D) 3 (E) Don't know.


• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -e^t$$

• depending on C, how many different results are possible for

$$\lim_{t \to \infty} y(t)$$
 ?

(A) 0 (B) 1 (C) 2 (D) 3 (E) Don't know.

• What is $\frac{d}{dt}e^{y}$? (A) e^{y} (B) $e^{y} \frac{dy}{dt}$ (C) ye^{y-1} (D) $ye^{y-1} \frac{dy}{dt}$ (E) Don't know.

• What is $\frac{d}{dt}e^{y}$? (A) e^{y} (B) $e^{y} \frac{dy}{dt}$ (C) ye^{y-1} (D) $ye^{y-1} \frac{dy}{dt}$ (E) Don't know.

• What is
$$\frac{d}{dt}e^{y}$$
?
Hint: rewrite as $e^{y}\frac{dy}{dt} = 1$.
 $\frac{d}{dt}(e^{y}) = 1$
 $e^{y} = t + C$
(D) $ye^{y} = \overline{dt}$
(E) Don't know.

Solve
$$\frac{dy}{dt} = e^{-y}$$
.
(A) $y(t) = 0$
(B) $y(t) = \ln(t) + C$
(C) $y(t) = \ln(t + C)$
(D) $y(t) = e^{t+C}$
(E) Don't know.

• What is
$$\frac{d}{dt}e^{y}$$
?
(A) e^{y}
(B) $e^{y}\frac{dy}{dt}$
(C) ye^{y-1}
(D) $ye^{y-1}\frac{dy}{dt}$
(E) Don't know.
• Solve $\frac{dy}{dt} = e^{-y}$.
(A) $y(t) = 0$
(B) $y(t) = \ln(t) + C$
(C) $y(t) = \ln(t) + C$
(D) $y(t) = e^{t+C}$
(E) Don't know.
(E) Don't know.

• What is
$$\frac{d}{dt}e^{y}$$
?
Hint: rewrite as $e^{y}\frac{dy}{dt} = t^{2}$.
 $\frac{d}{dt}(e^{y}) = t^{2}$
 $e^{y} = \frac{1}{3}t^{3} + C$
(D) $ye^{y} = \overline{dt}$
(E) Don't know.

olve
$$\frac{dy}{dt} = e^{-y}t^2$$
.
(A) $y(t) = t^2e^t + C$
(B) $y(t) = \frac{1}{3}t^3 + C$
(C) $y(t) = \ln\left(\frac{1}{3}t^3\right) + C$
(D) $y(t) = \ln\left(\frac{1}{3}t^3 + C\right)$

(E) Don't know.

• What is
$$\frac{d}{dt}e^{y}$$
?
Hint: rewrite as $e^{y}\frac{dy}{dt} = t^{2}$.
 $\frac{d}{dt}(e^{y}) = t^{2}$
 $e^{y} = \frac{1}{3}t^{3} + C$
(D) $ye^{y} = \overline{dt}$
(E) Don't know.

here
$$\frac{dy}{dt} = e^{-y}t^2$$
.
(A) $y(t) = t^2e^t + C$
(B) $y(t) = \frac{1}{3}t^3 + C$
(C) $y(t) = \ln\left(\frac{1}{3}t^3\right) + C$
(D) $y(t) = \ln\left(\frac{1}{3}t^3 + C\right)$

(E) Don't know.