Today

- Comment on pre-lecture problems
- Finish up with integrating factors
- The structure of solutions
- Separable equations

Pre-lecture assignment comments

Consider the initial value problem

$$
\frac{d y}{d t}-6 y=5 e^{2 t}, \quad y(0)=A . \quad \begin{gathered}
y^{\prime}-6 y=5 e^{2 t} \\
\left(e^{-6 t} y\right)^{\prime} \text { ectanswers }
\end{gathered}
$$

a. Find the solution.

$$
e^{-6 t} y=-\frac{5}{4} e^{-4 t}+C
$$

b. For what values of A does the above solution tend to $\infty, 0$ or $-\infty$ as $t \rightarrow \infty$?

Problem Number

$$
y(t)=-\frac{5}{4} e^{2 t}+\left(A+\frac{5}{4}\right) e^{6 t}
$$

Desmos demo: https://www.desmos.com/calculator/ne9u9c2q3b

Method of integrating factors

- Given that $\frac{d}{d t}\left(t^{2} y(t)\right)=t^{2} \frac{d y}{d t}+2 t y$
- if you're given the equation $t^{2} \frac{d y}{d t}+2 t y=0$
- you can rewrite is as $\frac{d}{d t}\left(t^{2} y(t)\right)=0$
arbitrary constant that appeared at an integration step
- so the solution is $t^{2} y(t)=C$ or equivalently $y(t)=\frac{C}{t^{2}}$.

Method of integrating factors

- Solve the equation $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ (not brute force checking).
(A) $y(t)=-\cos (t)+C$
(B) $y(t)=\frac{C-\cos (t)}{t^{2}}$
(C) $y(t)=\sin (t)+C$
(D) $y(t)=-\frac{1}{t^{2}} \cos (t)$
(E) Don't know.

Method of integrating factors

- Solve the equation $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ (not brute force checking).
(A) $y(t)=-\cos (t)+C$
(B) $y(t)=\frac{C-\cos (t)}{t^{2}}$
(C) $y(t)=\sin (t)+C$
 (although that's not obvious)
(D) $y(t)=-\frac{1}{t^{2}} \cos (t)$
\longleftarrow a particular solution
(E) Don't know.

Initial conditions (IC) and initial value problems (IVP)

- An initial condition is an added constraint on a solution.
- e.g. Solve $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ subject to the IC $y(\pi)=0$.
(A) $y(t)=-\frac{C+\cos (\pi)}{\pi^{2}}$
(B) $y(t)=-\frac{1-\cos (t)}{t^{2}}$
(C) $y(t)=\frac{1+\cos (t)}{t^{2}}$
(E) Don't know.
- An Initial Value Problem (IVP) is a ODE together with an IC.

Method of integrating factors

- What function should we multiply through by to make the LHS a perfect product rule?

$$
\begin{array}{ll}
t \frac{d y}{d t}+2 y(t)=1 & \rightarrow f(t)=t \\
t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} & \rightarrow f(t)=t^{2} \\
\frac{d y}{d t}+y(t)=0 & \rightarrow f(t)=e^{t} \\
\frac{d y}{d t}+\cos (t) y(t)=0 & \rightarrow f(t)=e^{\sin (t)} \\
\frac{d y}{d t}+g^{\prime}(t) y(t)=0 & \rightarrow f(t)=e^{g(t)}
\end{array}
$$

Technical definition of integrating factor

- For the general first order linear ODE

$$
a(t) y^{\prime}+b(t) y=g(t)
$$

- Divide through by $a(t)$ and define $p(t)=b(t) / a(t)$ and $q(t)=g(t) / a(t)$:

$$
y^{\prime}+p(t) y=q(t)
$$

- The function that, when multiplied through, make the LHS a perfect product rule is called the integrating factor.

Method of integrating factors

- General case - all first order linear ODEs can be written in the form

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- The appropriate integrating factor is $e^{\int p(t) d t}$.
- The equation can be rewritten $\frac{d}{d t}\left(e^{\int p(t) d t} y\right)=e^{\int p(t) d t} q(t)$ which is solvable provided you can find the antiderivative of the right hand side.

$$
\begin{gathered}
e^{\int p(t) d t} y(t)=\int e^{\int p(t) d t} q(t) d t+C \\
y(t)=e^{-\int p(t) d t} \int e^{\int p(t) d t} q(t) d t+C e^{-\int p(t) d t}
\end{gathered}
$$

The structure of solutions

- When the equation is of the form (called homogeneous)

$$
\frac{d y}{d t}+p(t) y=0
$$

- the solution is

$$
y(t)=C \mu(t)^{-1}
$$

- where

$$
\mu(t)=\exp \left(\int p(t) d t\right)
$$

- is the integrating factor.

The structure of solutions

- When the equation is of the form (called nonhomogeneous)

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- the solution is $y(t)=k(t)+C \mu(t)^{-1}$
- where $\mathrm{k}(\mathrm{t})$, as given earlier, involves no arbitrary constants.
- Think about this expression as $y(t)=y_{p}(t)+y_{h}(t)$
- Directly analogous to solving the vector equations $A \bar{x}=0$ and $A \bar{x}=\bar{b}$.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

- and plot a few of the integral curves.
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

- Steps: divide through by t , calculate $\mathrm{l}(\mathrm{t})$, take antiderivatives, solve for y .
 Or shortcut.

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- and plot a few of the integral curves.

$$
y(t)=e^{-t}+C e^{3 t}
$$

Limits at infinity

- If $\mathrm{y}(\mathrm{t})$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don't know.

