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• Review of solutions to the Diffusion Equation with various BCs.

• The Wave Equation.

• Separation of variables.
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• Adding the linear function to the usual solution to the Dirichlet problem ensures that the 
BCs are satisfied without changing the fact that it satisfies the PDE. 
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ρ = m/L = “density”, 
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∂
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(not obvious - requires more detail)
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+ Bn sin

nπct

L

�
sin

nπx

L
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�

An cos
nπct

L
+ Bn sin

nπct

L

�
sin

nπx

L

• Pull, hold and let go of a guitar string:

∂

∂t
u(x, 0) = 0
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