Today

- General solution for complex eigenvalues case.
- Shapes of solutions for complex eigenvalues case.

Calculating eigenvalues - trace/det shortcut

- For the general matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

- find the characteristic equation and solve it to find the eigenvalues.

$$
\begin{aligned}
& \text { (A) } \lambda ^ { 2 } \longdiv { \lambda ^ { 2 } - \operatorname { t r } (\mathrm { A }) \lambda + \operatorname { d e t } (A) = 0 } \\
& \text { (B) } \lambda^{2}+(0+c) \wedge+u c-0 a-0 \\
& \text { (C) } \lambda^{2}-(a+d) \lambda+a d-b c=0 \\
& \text { (D) } \lambda^{2}+(a-d) \lambda+a d+b c=0 \\
& \text { (E) I don't know how to find eigenvalues. }
\end{aligned}
$$

Complex eigenvalues (7.6) - example

- Find the general solution to $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right) \mathbf{x}$.
- The eigenvalues are
$\omega(\mathrm{A}) \lambda=1 \pm 2 i$
(B) $\lambda=-1,3$
(C) $\lambda=2 \pm 4 i$
(D) $\lambda=-2,6$
(E) I don't know how to find eigenvalues.

$$
=\left(\begin{array}{cc}
-2 i & 1 \\
-4 & -2 i
\end{array}\right) \times \frac{1}{2} i
$$

$$
\sim\left(\begin{array}{ll}
-2 i & 1 \\
-2 i & 1
\end{array}\right)
$$

$$
\mathbf{v}_{\mathbf{1}}=\binom{1}{2 i}
$$

$$
\mathbf{v}_{\mathbf{2}}=\binom{1}{-2 i}
$$

Complex eigenvalues (7.6) - example

- We could just write down a (complex valued) general solution:

$$
\mathbf{x}(\mathbf{t})=C_{1} e^{(1+2 i) t}\binom{1}{2 i}+C_{2} e^{(1-2 i) t}\binom{1}{-2 i}
$$

- But we want real valued solutions.

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
-4 & 1
\end{array}\right) \mathbf{x} \Rightarrow \begin{array}{l}
x_{1}^{\prime}=x_{1}+x_{2} \\
x_{2}^{\prime}=-4 x_{1}+x_{2}
\end{array} \\
& x_{1}^{\prime \prime}=x_{1}^{\prime}+x_{2}^{\prime} \\
& x_{1}^{\prime \prime}=x_{1}^{\prime}-4 x_{1}+x_{2}
\end{aligned} \quad \begin{array}{rl}
r^{2}-2 r+5=0 \\
x_{1}^{\prime \prime}=x_{1}^{\prime}-4 x_{1}+x_{1}^{\prime}-x_{1} & r=1 \pm 2 i \\
x_{1}^{\prime \prime}-2 x_{1}^{\prime}+5 x_{1}=0 &
\end{array}
$$

Complex eigenvalues (7.6) - example

- We could just write down a (complex valued) general solution:

$$
\mathbf{x}(\mathbf{t})=C_{1} e^{(1+2 i) t}\binom{1}{2 i}+C_{2} e^{(1-2 i) t}\binom{1}{-2 i}
$$

- But we want real valued solutions.

$$
\begin{gathered}
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
-4 & 1
\end{array}\right) \mathbf{x} \Rightarrow \begin{array}{l}
x_{1}^{\prime}=x_{1}+x_{2} \\
x_{2}^{\prime}=-4 x_{1}+x_{2}
\end{array} \\
r=1 \pm 2 i \quad \begin{array}{r}
x_{1}(t)=
\end{array} e^{t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right) \\
x_{1}^{\prime}(t)=e^{t}\left(-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)\right) \\
+e^{t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)
\end{gathered} \begin{array}{r}
x_{2}=x_{1}^{\prime}-x_{1}=e^{t}\left(-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)\right)
\end{array}
$$

Complex eigenvalues (7.6) - example

- We could just write down a (complex valued) general solution:

$$
\mathbf{x}(\mathbf{t})=C_{1} e^{(1+2 i) t}\binom{1}{2 i}+C_{2} e^{(1-2 i) t}\binom{1}{-2 i}
$$

- But we want real valued solutions.

$$
\begin{aligned}
& \left.\left.\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \\
-4 & 1
\end{array}\right) \mathbf{x} \Rightarrow \begin{array}{l}
x_{1}^{\prime}=x_{1}+x_{2} \\
x_{2}^{\prime}=-4 x_{1}+x_{2}
\end{array}\binom{1}{2 i}=\binom{1}{0}\right)+\binom{0}{2}\right) \\
& x_{1}(t)=e^{t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right) \\
& x_{2}(t)=e^{t}\left(-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)\right) \\
& \mathbf{x}(\mathbf{t})=e^{t}\left(C _ { 1 } \left(\left(\binom{1}{0} \cos (2 t)-\left(\binom{0}{2} \sin (2 t)\right)\right.\right.\right. \\
& \left.+C_{2}\left(\binom{1}{0} \sin (2 t)+\binom{0}{2} \cos (2 t)\right)\right)
\end{aligned}
$$

Complex eigenvalues (7.6) - example

- Alternatively, multiply out the complex solution and extract real and imaginary parts:

$$
\mathbf{x}(\mathbf{t})=C_{1} e^{(1+2 i) t}\binom{1}{2 i}+C_{2} e^{(1-2 i) t}\binom{1}{-2 i}
$$

- Simple case: $C_{1}=1, C_{2}=0$

$$
\begin{aligned}
\mathbf{x}(\mathbf{t})= & e^{(1+2 i) t}\binom{1}{2 i} \\
& =e^{t}(\cos (2 t)+i \sin (2 t))\left(\binom{1}{0}+\binom{0}{2} i\right) \\
& =e^{t}\left[\binom{1}{0} \cos (2 t)-\binom{0}{2} \sin (2 t)\right] \\
& \left.+e^{t}\left[\binom{1}{0} \sin (2 t)+\binom{0}{2} \cos (2 t)\right)\right] i
\end{aligned}
$$

Complex eigenvalues (7.6) - general case

- Find e-values, $\begin{aligned} \lambda=\alpha \pm \beta i, \text { and } \mathrm{e} \text {-vectors, } \mathbf{v} & =\binom{a_{1}}{a_{2}} \pm i\binom{b_{1}}{b_{2}} . \\ & =\text { (a) }+ \text { (b) }\end{aligned}$
- Write down solution (or use method on previous slide for formula-free):

$$
\begin{array}{r}
\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}\left(\binom{a_{1}}{a_{2}} \cos (\beta t)-\binom{b_{1}}{b_{2}} \sin (\beta t)\right)\right. \\
\left.+C_{2}\left(\binom{a_{1}}{a_{2}} \sin (\beta t)+\binom{b_{1}}{b_{2}} \cos (\beta t)\right)\right] \\
\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1} \text { acos }(\beta t)-\text { b } \sin (\beta t)\right) \\
\left.\left.+C_{2} \text { asin }(\beta t)+\text { b } \cos (\beta t)\right)\right]
\end{array}
$$

Complex eigenvalues (7.6) - example

- Suppose you find eigenvalue $\lambda=2 \pi i$ and eigenvector $\mathbf{v}=\binom{1}{i}$. Which of the following is a solution to the original equation?
$\boldsymbol{\omega}(\mathrm{A}) \mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)$
(B) $\mathbf{x}(\mathbf{t})=\binom{0}{1} \cos (2 \pi t)-\binom{1}{0} \sin (2 \pi t)$
$\boldsymbol{\omega}(\mathrm{C}) \mathbf{x}(\mathbf{t})=\binom{0}{1} \cos (2 \pi t)+\binom{1}{0} \sin (2 \pi t)$
(D) $\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)+\binom{0}{1} \sin (2 \pi t)$

Complex eigenvalues (7.6) - example

- Suppose you find eigenvalue $\lambda=2 \pi i$ and eigenvector $\mathbf{v}=\binom{1}{i}$. Which of the following is a solution to the original equation?

$$
\begin{aligned}
& \overline{\mathbf{x}}(\mathbf{t})=e^{2 \pi i t}\binom{1}{i} \\
&=(\cos (2 \pi t)+i \sin (2 \pi t))\binom{1}{i} \\
&=\binom{\cos (2 \pi t)+i \sin (2 \pi t))}{-\sin (2 \pi t)+i \cos (2 \pi t))} \\
& \text { once } \\
& \text { e the } \\
& \text { nary }=\frac{\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)}{\text { dep. }}
\end{aligned}
$$

- Sum and difference trick lets us take the Real and Imaginary parts as two indef. solutions

Complex eigenvalues (7.6) - example

- But what about $\lambda_{2}=-2 \pi i$ and $\mathbf{v}_{\mathbf{2}}=\binom{1}{-i}$?

$$
\begin{aligned}
\overline{\mathbf{x}}(\mathbf{t}) & =e^{-2 \pi i t}\binom{1}{-i} \\
& =(\cos (-2 \pi t)+i \sin (-2 \pi t))\binom{1}{-i} \\
& =\binom{\cos (2 \pi t)-i \sin (2 \pi t))}{-\sin (2 \pi t)-i \cos (2 \pi t))} \\
& =\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)
\end{aligned}
$$

$$
-i\left[\binom{0}{1} \cos (2 \pi t)+\binom{1}{0} \sin (2 \pi t)\right]
$$

Complex eigenvalues (7.6) - example

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)
$$

- What happens as t increases?
$\hat{\Delta}(\mathrm{A})$ The vector rotates clockwise.
(B) The vector rotates counterclockwise.
(C) The tip of the vector maps out a circle in the first quadrant.
(D) The tip of the vector maps out a circle in the fourth quadrant.
(E) Explain please.

Complex eigenvalues (7.6) - example

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)
$$

Complex eigenvalues (7.6) - example

- Same equation, initial condition chosen so that $\mathrm{C}_{1}=0$ and $\mathrm{C}_{2}=1$.

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \sin (2 \pi t)+\binom{0}{1} \cos (2 \pi t)
$$

$t=0$
$t=0 \quad \underset{\mathbf{x}(\mathbf{0})}{ }$
\qquad

- What happens as t increases?
$\hat{\Delta}$ (A) The vector rotates clockwise.
(B) The vector rotates counterclockwise.
(C) The tip of the vector maps out a circle in the first quadrant.
(D) The tip of the vector maps out
 $\pi / 2$ delayed.

Complex eigenvalues (7.6) - general case

- Looking at the general solution again...

$$
\begin{aligned}
& \mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))\right. \\
& \left.\quad+C_{2}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))\right]
\end{aligned}
$$

- Both parts rotate in the exact same way but the C_{2} part is delayed by a quarter phase.
- If an initial condition lies neither parallel to vector a nor to vector $\mathbf{b}, \mathrm{C}_{1}$ and C2 allow for intermediate phases to be achieved.
- $\mathbf{x}(\mathbf{t})$ can be rewritten (using trig identities) as

$$
\mathbf{x}(\mathbf{t})=M e^{\alpha t}(\mathbf{a} \cos (\beta t-\phi)-\mathbf{b} \sin (\beta t-\phi))
$$

where M and ϕ are constants to replace C_{1} and C_{2}.

Complex eigenvalues (7.6) - example

- Back to our earlier example where we found the general solution

$$
\begin{aligned}
\mathbf{x}(\mathbf{t})=e^{t}\left(C_{1}(\right. & \left.\binom{1}{0} \cos (2 t)-\binom{0}{2} \sin (2 t)\right) \\
& \left.+C_{2}\left(\binom{1}{0} \sin (2 t)+\binom{0}{2} \cos (2 t)\right)\right)
\end{aligned}
$$

(B) $\underset{\substack{r}}{ }$

(D)

(E) Explain, please.

