Today

- Comment on pre-lecture problems
- Finish up with integrating factors
- The structure of solutions
- Separable equations

Pre-lecture assignment comments

Pre-lecture assignment comments

Percentage of Active Students with Correct Answers

Problem Number

Pre-lecture assignment comments

Consider the initial value problem

$$
\frac{d y}{d t}-5 y=4 e^{2 t}, \quad y(0)=A
$$

a. Find the solution.

$$
y=
$$

b. For what values of A does the above solution tend to $\infty, 0$ or $-\infty$ as $t \rightarrow \infty$?

$$
\begin{aligned}
& \text { As } t \rightarrow \infty \\
& y \rightarrow \infty \text { if } A \in \\
& y \rightarrow 0 \text { if } A \in \\
& y \rightarrow-\infty \text { if } A \in
\end{aligned}
$$

Pre-lecture assignment comments

Solve the differential equation $\frac{d y}{d x}=\frac{x}{9 y}$.
a. Find the equation of the solution through the point $(x, y)=(-3,1)$.
help (equations)
b. Find the equation of the solution through the point $(x, y)=(0,-3)$.
help (equations)

Method of integrating factors (Section 2.1)

$$
\frac{d}{d t}\left(t^{2} y(t)\right)=
$$

(A) $2 t \frac{d y}{d t}$
(B) $t^{2} \frac{d y}{d t}$
(E) Don't know.
(C) $2 t y$
(D) $t^{2} \frac{d y}{d t}+2 t y$

Method of integrating factors (Section 2.1)

$$
\frac{d}{d t}\left(t^{2} y(t)\right)=
$$

(A) $2 t \frac{d y}{d t}$
(B) $t^{2} \frac{d y}{d t}$
(E) Don't know.
(C) $2 t y$
(D) $t^{2} \frac{d y}{d t}+2 t y$

Method of integrating factors (Section 2.1)

- Given that $\frac{d}{d t}\left(t^{2} y(t)\right)=t^{2} \frac{d y}{d t}+2 t y$
- if you're given the equation $t^{2} \frac{d y}{d t}+2 t y=0$
- you can rewrite is as $\frac{d}{d t}\left(t^{2} y(t)\right)=0$
arbitrary constant that appeared at an integration step
- so the solution is $t^{2} y(t)=C$ or equivalently $y(t)=\frac{C}{t^{2}}$.

Method of integrating factors (Section 2.1)

- Solve the equation $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ (not brute force checking).
(A) $y(t)=-\cos (t)+C$
(B) $y(t)=\frac{C-\cos (t)}{t^{2}}$
(C) $y(t)=\sin (t)+C$
(D) $y(t)=-\frac{1}{t^{2}} \cos (t)$
(E) Don't know.

Method of integrating factors (Section 2.1)

- Solve the equation $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ (not brute force checking).
(A) $y(t)=-\cos (t)+C$
(B) $y(t)=\frac{C-\cos (t)}{t^{2}}$
(C) $y(t)=\sin (t)+C$
\longleftarrow general solution (although that's not obvious)
(D) $y(t)=-\frac{1}{t^{2}} \cos (t)$ a particular solution
(E) Don't know.

Initial conditions (IC) and initial value problems (IVP)

(E) Don't know.

Initial conditions (IC) and initial value problems (IVP)

- An initial condition is an added constraint on a solution.
(E) Don't know.

Initial conditions (IC) and initial value problems (IVP)

- An initial condition is an added constraint on a solution.
- e.g. Solve $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ subject to the IC $y(\pi)=0$.
(E) Don't know.

Initial conditions (IC) and initial value problems (IVP)

- An initial condition is an added constraint on a solution.
- e.g. Solve $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ subject to the IC $y(\pi)=0$.
(A) $y(t)=-\frac{C+\cos (\pi)}{\pi^{2}}$
(B) $y(t)=-\frac{1-\cos (t)}{t^{2}}$
(C) $y(t)=\frac{1+\cos (t)}{t^{2}}$
(E) Don't know.
(D) $y(t)=-\frac{1+\cos (t)}{t^{2}}$

Initial conditions (IC) and initial value problems (IVP)

- An initial condition is an added constraint on a solution.
- e.g. Solve $t^{2} \frac{d y}{d t}+2 t y(t)=\sin (t)$ subject to the IC $y(\pi)=0$.
(A) $y(t)=-\frac{C+\cos (\pi)}{\pi^{2}}$
(B) $y(t)=-\frac{1-\cos (t)}{t^{2}}$
(C) $y(t)=\frac{1+\cos (t)}{t^{2}}$
(E) Don't know.
(D) $y(t)=-\frac{1+\cos (t)}{t^{2}}$
- An Initial Value Problem (IVP) is a ODE together with an IC.

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{aligned}
& t \frac{d y}{d t}+2 y(t)=1 \\
& t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} \\
& \frac{d y}{d t}+y(t)=0 \\
& \frac{d y}{d t}+\cos (t) y(t)=0 \\
& \frac{d y}{d t}+g^{\prime}(t) y(t)=0
\end{aligned}
$$

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{aligned}
& t \frac{d y}{d t}+2 y(t)=1 \quad \rightarrow f(t)=t \\
& t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} \\
& \frac{d y}{d t}+y(t)=0 \\
& \frac{d y}{d t}+\cos (t) y(t)=0 \\
& \frac{d y}{d t}+g^{\prime}(t) y(t)=0
\end{aligned}
$$

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{array}{ll}
t \frac{d y}{d t}+2 y(t)=1 & \rightarrow f(t)=t \\
t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} & \rightarrow f(t)=t^{2} \\
\frac{d y}{d t}+y(t)=0 & \\
\frac{d y}{d t}+\cos (t) y(t)=0 & \\
\frac{d y}{d t}+g^{\prime}(t) y(t)=0 &
\end{array}
$$

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{array}{ll}
t \frac{d y}{d t}+2 y(t)=1 & \rightarrow f(t)=t \\
t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} & \rightarrow f(t)=t^{2} \\
\frac{d y}{d t}+y(t)=0 & \rightarrow f(t)=e^{t} \\
\frac{d y}{d t}+\cos (t) y(t)=0 & \\
\frac{d y}{d t}+g^{\prime}(t) y(t)=0 &
\end{array}
$$

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{array}{ll}
t \frac{d y}{d t}+2 y(t)=1 & \rightarrow f(t)=t \\
t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} & \rightarrow f(t)=t^{2} \\
\frac{d y}{d t}+y(t)=0 & \rightarrow f(t)=e^{t} \\
\frac{d y}{d t}+\cos (t) y(t)=0 & \rightarrow f(t)=e^{\sin (t)} \\
\frac{d y}{d t}+g^{\prime}(t) y(t)=0 &
\end{array}
$$

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{array}{ll}
t \frac{d y}{d t}+2 y(t)=1 & \rightarrow f(t)=t \\
t^{2} \frac{d y}{d t}+4 t y(t)=\frac{1}{t} & \rightarrow f(t)=t^{2} \\
\frac{d y}{d t}+y(t)=0 & \rightarrow f(t)=e^{t} \\
\frac{d y}{d t}+\cos (t) y(t)=0 & \rightarrow f(t)=e^{\sin (t)} \\
\frac{d y}{d t}+g^{\prime}(t) y(t)=0 & \rightarrow f(t)=e^{g(t)}
\end{array}
$$

Method of integrating factors (Section 2.1)

- What's the integrating factor?

$$
\begin{array}{ll}
t \frac{d y}{d t}+2 y(t)=1 & \rightarrow f(t)=t \\
t^{2} \underline{d y}+\Delta+\mu_{1}(t)-1 & \rightarrow f(t)=t^{2}
\end{array}
$$

In class, I referred to these $f(t)$ functions as the integrating factors. This is incorrect. They are functions that you can multiply the ORIGINAL equation by to get a perfect "product rule" form. But an integrating factor is defined as the function that you would multiply the "normalized" equation by to get the "product rule" form. By "normalized", I mean after dividing through by the coefficient on dy/dt. So for the first example above, the integrating factor would be $l(t)=t^{2}$ and the equation you multiply it through is $d y / d t+2 / t y=1 / t$.

$$
\frac{d y}{d t}+g^{\prime}(t) y(t)=0 \quad \rightarrow f(t)=e^{g(t)}
$$

Method of integrating factors (Section 2.1)

- General case - all first order linear ODEs can be written in the form

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

Method of integrating factors (Section 2.1)

- General case - all first order linear ODEs can be written in the form

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- The appropriate integrating factor is $e^{\int p(t) d t}$.

Method of integrating factors (Section 2.1)

- General case - all first order linear ODEs can be written in the form

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- The appropriate integrating factor is $e^{\int p(t) d t}$.
- The equation can be rewritten $\frac{d}{d t}\left(e^{\int p(t) d t} y\right)=e^{\int p(t) d t} q(t)$ which is solvable provided you can find the antiderivative of the right hand side.

Method of integrating factors (Section 2.1)

- General case - all first order linear ODEs can be written in the form

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- The appropriate integrating factor is $e^{\int p(t) d t}$.
- The equation can be rewritten $\frac{d}{d t}\left(e^{\int p(t) d t} y\right)=e^{\int p(t) d t} q(t)$ which is solvable provided you can find the antiderivative of the right hand side.

$$
e^{\int p(t) d t} y(t)=\int e^{\int p(t) d t} q(t) d t+C
$$

Method of integrating factors (Section 2.1)

- General case - all first order linear ODEs can be written in the form

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- The appropriate integrating factor is $e^{\int p(t) d t}$.
- The equation can be rewritten $\frac{d}{d t}\left(e^{\int p(t) d t} y\right)=e^{\int p(t) d t} q(t)$ which is solvable provided you can find the antiderivative of the right hand side.

$$
\begin{gathered}
e^{\int p(t) d t} y(t)=\int e^{\int p(t) d t} q(t) d t+C \\
y(t)=e^{-\int p(t) d t} \int e^{\int p(t) d t} q(t) d t+C e^{-\int p(t) d t}
\end{gathered}
$$

The structure of solutions

- When the equation is of the form (called homogeneous)

$$
\frac{d y}{d t}+p(t) y=0
$$

- the solution is

$$
y(t)=C \mu(t)^{-1}
$$

- where

$$
\mu(t)=\exp \left(\int p(t) d t\right)
$$

- is the integrating factor.

The structure of solutions

- When the equation is of the form (called nonhomogeneous)

$$
\frac{d y}{d t}+p(t) y=q(t)
$$

- the solution is $y(t)=k(t)+C \mu(t)^{-1}$
- where $\mathrm{k}(\mathrm{t})$ involves no arbitrary constants.
- Think about this expression as $y(t)=y_{p}(t)+y_{h}(t)$
- Directly analogous to solving the vector equations $A \bar{x}=0$ and $A \bar{x}=\bar{b}$.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

- and plot a few of the integral curves.
- Integral curve - the graph of a solution to an ODE.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2} \quad \text { (A) } y(t)=t^{2}
$$

- and plot a few of the integral curves.
(B) $y(t)=t^{2}+C \frac{1}{t^{2}}$
- Integral curve - the graph of a solution to an ODE.
(C) $y(t)=t^{2}+C$
(D) $y(t)=C \frac{1}{t^{2}}$
(E) Don't know.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2} \quad \text { (A) } y(t)=t^{2}
$$

- and plot a few of the integral curves.
(B) $y(t)=t^{2}+C \frac{1}{t^{2}}$
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

(C) $y(t)=t^{2}+C$
(D) $y(t)=C \frac{1}{t^{2}}$
(E) Don't know.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

(A) $y(t)=t^{2}$

- and plot a few of the integral curves.
(B) $y(t)=t^{2}+C \frac{1}{t^{2}}$
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

- Steps: divide through by t , calculate $l(t)$, take antiderivatives, solve for y. Or shortcut.
(C) $y(t)=t^{2}+C$
(D) $y(t)=C \frac{1}{t^{2}}$
(E) Don't know.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

- and plot a few of the integral curves.
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

- Steps: divide through by t , calculate $l(t)$, take antiderivatives, solve for y.
 Or shortcut.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

- and plot a few of the integral curves.
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

- Steps: divide through by t , calculate $l(t)$, take antiderivatives, solve for y.
 Or shortcut.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

- and plot a few of the integral curves.
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

- Steps: divide through by t , calculate $l(t)$, take antiderivatives, solve for y.
 Or shortcut.

Examples

- Find the general solution to

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

- and plot a few of the integral curves.
- Integral curve - the graph of a solution to an ODE.

$$
y(t)=t^{2}+C \frac{1}{t^{2}}
$$

- Steps: divide through by t , calculate $l(t)$, take antiderivatives, solve for y.
 Or shortcut.

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- and plot a few of the integral curves.

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t} \quad \text { (A) } y(t)=e^{-t}
$$

- and plot a few of the integral curves.
(B) $y(t)=e^{-t}+C e^{3 t}$
(C) $y(t)=e^{-3 t}$
(D) $y(t)=e^{-4 t}+C$
(E) Don't know.

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t} \quad \text { (A) } y(t)=e^{-t}
$$

- and plot a few of the integral curves.
(B) $y(t)=e^{-t}+C e^{3 t}$
(C) $y(t)=e^{-3 t}$

$$
y(t)=e^{-t}+C e^{3 t}
$$

(D) $y(t)=e^{-4 t}+C$
(E) Don't know.

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- and plot a few of the integral curves.

$$
y(t)=e^{-t}+C e^{3 t}
$$

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- and plot a few of the integral curves.

$$
y(t)=e^{-t}+C e^{3 t}
$$

Examples

- Find the general solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- and plot a few of the integral curves.

$$
y(t)=e^{-t}+C e^{3 t}
$$

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don’t know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C , how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(E) Don’t know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-4 e^{-t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C, how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1

$$
y(t)=\frac{1}{2} e^{t}+C e^{3 t}
$$

(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C , how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1

$$
y(t)=\frac{1}{2} e^{t}+C e^{3 t}
$$

(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C , how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1

$$
y(t)=\frac{1}{2} e^{t}+C e^{3 t}
$$

(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C , how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1

$$
y(t)=\frac{1}{2} e^{t}+C e^{3 t}
$$

(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C , how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1

$$
y(t)=\frac{1}{2} e^{t}+C e^{3 t}
$$

(C) 2
(D) 3
(E) Don't know.

Limits at infinity

- If $y(t)$ is a particular solution to

$$
\frac{d y}{d t}-3 y=-e^{t}
$$

- depending on C , how many different results are possible for

$$
\lim _{t \rightarrow \infty} y(t) ?
$$

(A) 0
(B) 1

$$
y(t)=\frac{1}{2} e^{t}+C e^{3 t}
$$

(C) 2
(D) 3
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?
(A) e^{y}
(B) $e^{y} \frac{d y}{d t}$
(C) $y e^{y-1}$
(D) $y e^{y-1} \frac{d y}{d t}$
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?
(A) e^{y}
(B) $e^{y} \frac{d y}{d t}$
(C) $y e^{y-1}$
(D) $y e^{y-1} \frac{d y}{d t}$
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?
- Solve $\frac{d y}{d t}=e^{-y}$.
(A) e^{y}
(A) $\quad y(t)=0$
(B) $e^{y} \frac{d y}{d t}$
(B) $\quad y(t)=\ln (t)+C$
(C) $y e^{y-1}$
(C) $\quad y(t)=\ln (t+C)$
(D) $y e^{y-1} \frac{d y}{d t}$
(D) $y(t)=e^{t+C}$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=1$.
(B) $e^{y} \frac{d y}{d t}$

- Solve $\frac{d y}{d t}=e^{-y}$.
(A) $\quad y(t)=0$
(C) $y e^{y-1}$
(C) $y(t)=\ln (t+C)$
(D) $y e^{y-1} \frac{d y}{d t}$
(D) $y(t)=e^{t+C}$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=1$.

$$
\frac{d}{d t}\left(e^{y}\right)=1
$$

- Solve $\frac{d y}{d t}=e^{-y}$.
(A) $\quad y(t)=0$
(B) $y(t)=\ln (t)+C$
(C) $\quad y(t)=\ln (t+C)$
(D) $y e^{y-1} \frac{d y}{d t}$
(D) $y(t)=e^{t+C}$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=1$.
$\frac{d}{d t}\left(e^{y}\right)=1$
$e^{y}=t+C$
(D) $y e^{-\quad \overline{d t}}$

- Solve $\frac{d y}{d t}=e^{-y}$.
(A) $\quad y(t)=0$
(B) $y(t)=\ln (t)+C$
(C) $y(t)=\ln (t+C)$
(D) $y(t)=e^{t+C}$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?
- Solve $\frac{d y}{d t}=e^{-y}$.
(A) e^{y}
(A) $\quad y(t)=0$
(B) $e^{y} \frac{d y}{d t}$
(B) $\quad y(t)=\ln (t)+C$
(C) $y e^{y-1}$
(C) $y(t)=\ln (t+C)$
(D) $y e^{y-1} \frac{d y}{d t}$
(D) $y(t)=e^{t+C}$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?
- Solve $\frac{d y}{d t}=e^{-y} t^{2}$.
(A) e^{y}
(A) $y(t)=t^{2} e^{t}+C$
(B) $e^{y} \frac{d y}{d t}$
(B) $y(t)=\frac{1}{3} t^{3}+C$
(C) $y e^{y-1}$
(C) $y(t)=\ln \left(\frac{1}{3} t^{3}\right)+C$
(D) $y e^{y-1} \frac{d y}{d t}$
(D) $y(t)=\ln \left(\frac{1}{3} t^{3}+C\right)$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=t^{2}$.
(D) $y e^{\circ} \quad \overline{d t}$
(E) Don't know.

- Solve $\frac{d y}{d t}=e^{-y} t^{2}$.
(A) $y(t)=t^{2} e^{t}+C$
(B) $y(t)=\frac{1}{3} t^{3}+C$
(C) $y(t)=\ln \left(\frac{1}{3} t^{3}\right)+C$
(D) $y(t)=\ln \left(\frac{1}{3} t^{3}+C\right)$
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=t^{2}$.

$$
\frac{d}{d t}\left(e^{y}\right)=t^{2}
$$

(D) ye

- Solve $\frac{d y}{d t}=e^{-y} t^{2}$.
(A) $y(t)=t^{2} e^{t}+C$
(B) $y(t)=\frac{1}{3} t^{3}+C$
(C) $y(t)=\ln \left(\frac{1}{3} t^{3}\right)+C$
(D) $y(t)=\ln \left(\frac{1}{3} t^{3}+C\right)$
(E) Don't know.
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=t^{2}$.

$$
\begin{gathered}
\frac{d}{d t}\left(e^{y}\right)=t^{2} \\
e^{y}=\frac{1}{3} t^{3}+C \\
\text { (D) } y e^{\quad \overline{d t}}
\end{gathered}
$$

(E) Don't know.

- Solve $\frac{d y}{d t}=e^{-y} t^{2}$.
(A) $y(t)=t^{2} e^{t}+C$
(B) $y(t)=\frac{1}{3} t^{3}+C$
(C) $y(t)=\ln \left(\frac{1}{3} t^{3}\right)+C$
(D) $y(t)=\ln \left(\frac{1}{3} t^{3}+C\right)$
(E) Don't know.

Separable equations (Section 2.2)

- What is $\frac{d}{d t} e^{y}$?

Hint: rewrite as $e^{y} \frac{d y}{d t}=t^{2}$.

$$
\begin{gathered}
\frac{d}{d t}\left(e^{y}\right)=t^{2} \\
e^{y}=\frac{1}{3} t^{3}+C \\
\text { (D) } y e \quad \overline{d t}
\end{gathered}
$$

(E) Don't know.

- Solve $\frac{d y}{d t}=e^{-y} t^{2}$.
(A) $y(t)=t^{2} e^{t}+C$
(B) $y(t)=\frac{1}{3} t^{3}+C$
(C) $y(t)=\ln \left(\frac{1}{3} t^{3}\right)+C$
(D) $y(t)=\ln \left(\frac{1}{3} t^{3}+C\right)$
(E) Don't know.

