
Today

• Modeling with delta-function forcing

• Convolution

• Transfer functions
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Delta-function forcing (6.5)

• Water with cin = 2 g/L of sugar enters a tank at a rate of r = 1 L/min. The 
initially sugar-free tank holds V = 5 L and the contents are well-mixed. 
Water drains from the tank at a rate r. At tcube = 3 min, a sugar cube of 
mass mcube = 3 g is dropped into the tank. 
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https://www.desmos.com/calculator/eizjtgf3jc
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Delta-function forcing (6.5)

• A hammer hits a mass-spring system imparting an impulse of       .           
at             . The mass of the block is                  . The drag coefficient 
is                  . and the spring constant is                       . The mass is 
initially at                     with velocity                         .

m = 1 kg
γ = 2 kg/s k = 10 kg/s2

I0 = 2 N s

y(0) = 5 m y�(0) = 0 m/s

t = 5 s
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Delta-function forcing (6.5)

Y (s) =
2(e−5s + s + 2)
s2 + 2s + 10

=
2e−5s

s2 + 2s + 10
+ 2

s + 2
s2 + 2s + 10

=
2e−5s

s2 + 2s + 10
+ 2

s + 2
(s + 1)2 + 9

=
2e−5s

s2 + 2s + 10
+ 2

s + 1
(s + 1)2 + 9

+
2

(s + 1)2 + 9

=
2e−5s

s2 + 2s + 10
+ 2

s + 1
(s + 1)2 + 9

+
2
3

3
(s + 1)2 + 9

=
2
3

3e−5s

(s + 1)2 + 9
+ 2

s + 1
(s + 1)2 + 9

+
2
3

3
(s + 1)2 + 9

• Inverting Y(s)...   (go through this on your own)

y(t) =
2
3
u5(t)e−(t−5) sin(3(t− 5)) + 2e−t cos(3t) +

2
3
e−t sin(3t)
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Convolution (6.6)

• We often end up with transforms to invert that are the product of two 
known transforms. For example,

Y (s) =
2

s2(s2 + 4)
=

1
s2

· 2
s2 + 4
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Convolution (6.6)

F (s)G(s) =
� ∞

0
e−sτf(τ) dτ

� ∞

0
e−swg(w) dw

(on the board)
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Convolution (6.6)

F (s)G(s) =
� ∞

0
e−sτf(τ) dτ

� ∞

0
e−swg(w) dw

=
� ∞

0
e−swg(w)

� ∞

0
e−sτf(τ) dτ dw

=
� ∞

0
g(w)

� ∞

0
e−s(τ+w)f(τ) dτ dw

=
� ∞

0
g(w)

� ∞

?
e−s(u)f(u− w) du dw=

� ∞

0
g(w)

� ∞

w
e−s(u)f(u− w) du dw

Replace    using                  .τ u = τ + w

=
� ∞

0

� ∞

w
e−sug(w)f(u− w) du dw

=
� b

a

� d

c
e−sug(w)f(u− w) dw du

7



Convolution (6.6)

• What are the correct values for a, b, c and d?
� ∞

0

� ∞

w
e−sug(w)f(u− w) du dw

=
� b

a

� d

c
e−sug(w)f(u− w) dw du

(A) Integrate in u from a=0 to b=∞ and in w from c=u, d=∞.

(B) Integrate in u from a=0 to b=w and in w from c=0 to d=∞. 

(C) Integrate in u from a=0 to b=∞ and in w from c=0 to d=u.

(D) Integrate in u from a=0 to b=∞ and in w from c=w to d=∞.

(E) Huh?
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Denoted         .
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The transform of a convolution is 
the product of the transforms.
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Convolution (6.6)

• To invert                                  , we can use the fact that the inverse is 

the convolution of the inverses of the two pieces (instead of PFD...). 

L−1

�
1
s2

�
=

Y (s) =
1
s2

· 2
s2 + 4

L−1

�
2

s2 + 4

�
=

10
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numbers per unit time that you memorize at time t.
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