
Today

• Introduction to systems of equations

• Direction fields

• Eigenvalues and eigenvectors

• Finding the general solution (distinct e-value case)

• Return midterm 1



Introduction to systems of equations

mx�� + γx� + kx = 0

x�� = v�
x� = v

→ mv� + γv + kx = 0

v� = − γ

m
v − k

m
x

• So far, we’ve only dealt with equations with one unknown function. 
Sometimes, we’ll be interested in more than one unknown function.

• Examples: 

• position of object in one dimensional space in terms of x, v:
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Introduction to systems of equations

• So far, we’ve only dealt with equations with one unknown function. 
Sometimes, we’ll be interested in more than one unknown function.

• Examples: 

• position of object in one dimensional space in terms of x, v.

• position of an object in a plane (x, y coordinates) or three 
dimensional space (x, y, z coordinates).

• positions of multiple objects (two or more masses linked by 
springs ).

• concentration in connected chambers (saltwater in multiple tanks, 
intracellular and extracellular, blood stream and organs).

• populations of two species (e.g. predator and prey).



Introduction to systems of equations

• As with single equations, we have linear and nonlinear systems:
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= t2x− y2
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= t2x− y + cos(2t)
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= x + 4 sin(t)y + t3
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• And we also have nonhomogeneous and homogeneous systems.

dx

dt
= t2x− y + cos(2t)

dy

dt
= x + 4 sin(t)y + t3



Introduction to systems of equations

• We’ll focus on the case in which the matrix has constant entries. And 
homogeneous, to start. For example, 
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• Any linear system can be written in matrix form:
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Introduction to systems of equations

• Geometric interpretation - direction fields.
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(x(t), y(t))• Think of the unknown functions as coordinates                       of an 
object in the plane.
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• Solutions must follow the arrows.
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(A)  

(B)  

(C)  

(D)  

(E) Explain, please.

Introduction to systems of equations

• Which of the following equations matches the given direction field?
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http://kevinmehall.net/p/equationexplorer/
vectorfield.html#(x+y)i+(x-y)j%7C%5B-10,10,-10,10%5D
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Introduction to systems of equations

• You should see two 
“special” directions.

• What are they?

• Directions along which 
the velocity vector is 
parallel to the position 
vector.

• That is,                   .Av = λv
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Matrix review (eigen-calculations)

• Find eigenvalues and eigenvectors of                           .A =
�
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• Looking for values     and vectors     for which                  .Av = λvvλ

• What are the eigenvalues of A?

(A)  1 and -3

(B)  -1 and 3 

(C)  1 and 3

(D)  -1 and -3

(E) Explain, please.



Matrix review (eigen-calculations)

• Find eigenvalues and eigenvectors of                           .A =
�
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Av − λv = 0
(A− λI)v = 0

det(A− λI) = 0

λ = 1± 2 = −1, 3

det
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• Looking for values     and vectors     for which                  .Av = λvvλ

• What are the eigenvectors 
associated with λ1=-1?
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(C)  

(D)

v1 =
�

1
−2

�

v1 = c

�
1
−2

�

(E) Explain, please.

v1 = c

�
2
1

�
v1 =

�
2
1

�



Matrix review (eigen-calculations)

• Find eigenvalues and eigenvectors of                           .A =
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• Looking for values     and vectors     for which                  .Av = λvvλ

�
2 1
4 2

�
∼

�
2 1
0 0

�

2v1 + v2 = 0

v1 =
�

1
−2

�

(and any scalar multiple of it)



Matrix review (eigen-calculations)

• Find eigenvalues and eigenvectors of                           .A =
�
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Av − λv = 0
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• Looking for values     and vectors     for which                  .Av = λvvλ



Solving a system of ODEs

• This is a shortcut approach for 2x2 systems, mostly for insight.

• Find the general solution to the system of equations
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2 = 4x1 + x2

• Convert this into a second order equation in only one unknown (x1):
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1 − x1
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1 − 3x1 = 0

or equivalently



Solving a system of ODEs

• This is a shortcut approach for 2x2 systems, mostly for insight.

• Find the general solution to the system of equations

x� =
�
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2 = 4x1 + x2

• Convert this into a second order equation in only one unknown (x1):

x��
1 − 2x�

1 − 3x1 = 0

or equivalently

r = −1, 3

x2 = x�
1 − x1 = −C1e

−t + 3C2e
3t − C1e

−t − C2e
3t

= −2C1e
−t + 2C2e

3t

→ r2 − 2r − 3 = 0

x1 = C1e
−t + C2e

3t



Solving a system of ODEs

• This is a shortcut approach for 2x2 systems, mostly for insight.

• Find the general solution to the system of equations
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• Recall:



Solving a system of ODEs

• You can use the second order trick for 2x2 but in general,

• Find eigenvalues and eigenvectors of A,

• Assemble general solution by summing up terms of the form

• This works when eigenvalues are distinct or, if there are repeated 
eigenvalues, when there are N independent eigenvectors.

• Other cases (not enough e-vectors or complex e-values) Thursday.
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