Today

- Finish up undetermined coefficients (on the midterm, on WW3)
- Physics applications - mass springs (not on midterm, (on WW4)
- Undamped, over/under/critically damped oscillations (maybe Thurs)

Method of undetermined coefficients

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
y^{\prime \prime}+2 y^{\prime}-3 y=0
$$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?
- Try $y_{p}(t)=A e^{2 t}$.

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?
- $\operatorname{Try} y_{p}(t)=A e^{2 t}$.
- $L\left[y_{p}(t)\right]=L\left[A e^{2 t}\right]=$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?
- Try $y_{p}(t)=A e^{2 t}$.
- $L\left[y_{p}(t)\right]=L\left[A e^{2 t}\right]=\{$
(A) $5 e^{2 t}$
(C) $4 e^{2 t}$
(B) $5 A e^{2 t}$
(D) $4 A e^{2 t}$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?
- $\operatorname{Try} y_{p}(t)=A e^{2 t}$.
- $L\left[y_{p}(t)\right]=L\left[A e^{2 t}\right]= \begin{cases}\text { (A) } 5 e^{2 t} & \text { (C) } 4 e^{2 t} \\ \text { (B) } 5 A e^{2 t} & \text { (D) } 4 A e^{2 t}\end{cases}$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?
- $\operatorname{Try} y_{p}(t)=A e^{2 t}$.
- $L\left[y_{p}(t)\right]=L\left[A e^{2 t}\right]= \begin{cases}\text { (A) } 5 e^{2 t} & \text { (C) } 4 e^{2 t} \\ \text { (B) } 5 A e^{2 t} & \text { (D) } 4 A e^{2 t}\end{cases}$
- A is an undetermined coefficient (until you determine it).

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:
- We know that, for any C_{1} and C_{2},

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}\right]=0
$$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:
- We know that, for any C_{1} and C_{2},

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}\right]=0
$$

- We also know that

$$
L\left[A e^{2 t}\right]=5 A e^{2 t}
$$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:
- We know that, for any C_{1} and C_{2},

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}\right]=0
$$

- We also know that

$$
L\left[A e^{2 t}\right]=5 A e^{2 t}
$$

- Finally, by linearity, we know that

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}+A e^{2 t}\right]=0+5 A e^{2 t}
$$

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:
- We know that, for any C_{1} and C_{2},

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}\right]=0
$$

- We also know that

$$
L\left[A e^{2 t}\right]=5 A e^{2 t}
$$

- Finally, by linearity, we know that

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}+A e^{2 t}\right]=0+5 A e^{2 t}
$$

- So what's left to do to find our general solution? Pick $\mathrm{A}=$?

Method of undetermined coefficients

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:
- We know that, for any C_{1} and C_{2},

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}\right]=0
$$

- We also know that

$$
L\left[A e^{2 t}\right]=5 A e^{2 t}
$$

- Finally, by linearity, we know that

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}+A e^{2 t}\right]=0+5 A e^{2 t}
$$

- So what's left to do to find our general solution? Pick $A=1 / 5$.

Method of undetermined coefficients

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
-What is the solution to the associated homogeneous equation?
(A) $y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}$
(B) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$
(C) $y_{h}(t)=C_{1} e^{2 t}+C_{2} t e^{2 t}$
(D) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+e^{t}$
(E) Don't know.

Method of undetermined coefficients

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
-What is the solution to the associated homogeneous equation?

$$
\hat{s}(\mathrm{~A}) y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}
$$

(B) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$
(C) $y_{h}(t)=C_{1} e^{2 t}+C_{2} t e^{2 t}$
(D) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+e^{t}$
(E) Don't know.

Method of undetermined coefficients

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$
(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A e^{t}$
(D) $y_{p}(t)=A t e^{t}$
(E) Don't know

Method of undetermined coefficients

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$
(B) $y_{p}(t)=A e^{-2 t}$
$\hat{\Delta}(\mathrm{C}) y_{p}(t)=A e^{t}$
(D) $y_{p}(t)=A t e^{t}$
(E) Don't know

Method of undetermined coefficients

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
- What is the value of A that gives the particular solution $\left(A e^{t}\right)$?
(A) $A=1$
(B) $A=3$
(C) $A=1 / 3$
(D) $A=-1 / 3$
(E) Don't know.

Method of undetermined coefficients

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
- What is the value of A that gives the particular solution $\left(A e^{t}\right)$?
(A) $A=1$
(B) $A=3$
(C) $A=1 / 3$
\hat{s} (D) $A=-1 / 3$
(E) Don't know.

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the solution to the associated homogeneous equation?
(A) $y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}$
(B) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$
(C) $y_{h}(t)=C_{1} e^{2 t}+C_{2} t e^{2 t}$
(D) $y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}+e^{t}$
(E) Don't know.

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the solution to the associated homogeneous equation?

$$
\widehat{(A)} y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}
$$

$$
\text { (B) } y_{h}(t)=C_{1} \cos (2 t)
$$

(C) $y_{h}(t)$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$
(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A t e^{2 t}$
(D) $y_{p}(t)=A e^{t}$
(E) $y_{p}(t)=A t e^{t}$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$

$$
\left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0!
$$

(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A t e^{2 t}$
(D) $y_{p}(t)=A e^{t}$
(E) $y_{p}(t)=A t e^{t}$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$

$$
\left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0!
$$

(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A t e^{2 t}$

- Simpler example in which the RHS is a solution to the homogeneous problem.

$$
y^{\prime}-y=e^{t}
$$

(D) $y_{p}(t)=A e^{t}$
(E) $y_{p}(t)=A t e^{t}$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$

$$
\left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0!
$$

(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A t e^{2 t}$
(D) $y_{p}(t)=A e^{t}$

- Simpler example in which the RHS is a solution to the homogeneous problem.

$$
\begin{gathered}
y^{\prime}-y=e^{t} \\
e^{-t} y^{\prime}-e^{-t} y=1
\end{gathered}
$$

(E) $y_{p}(t)=A t e^{t}$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$

$$
\left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0!
$$

(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A t e^{2 t}$
(D) $y_{p}(t)=A e^{t}$
(E) $y_{p}(t)=A t e^{t}$

- Simpler example in which the RHS is a solution to the homogeneous problem.

$$
\begin{gathered}
y^{\prime}-y=e^{t} \\
e^{-t} y^{\prime}-e^{-t} y=1 \\
y=t e^{t}+C e^{t}
\end{gathered}
$$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}$

$$
\left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0!
$$

(B) $y_{p}(t)=A e^{-2 t}$
(C) $y_{p}(t)=A t e^{2 t}$
(D) $y_{p}(t)=A e^{t}$
(E) $y_{p}(t)=A t e^{t}$

- Simpler example in which the RHS is a solution to the homogeneous problem.

$$
\begin{gathered}
y^{\prime}-y=e^{t} \\
e^{-t} y^{\prime}-e^{-t} y=1 \\
y=t e^{t}+C e^{t}
\end{gathered}
$$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{array}{cc}
\text { (A) } y_{p}(t)=A e^{2 t} & \left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0! \\
\text { (B) } y_{p}(t)=A e^{-2 t} & \begin{array}{l}
\text { - Simpler example in which } \\
\text { the RHS is a solution to the } \\
\text { homogeneous problem. }
\end{array} \\
\text { (C) } y_{p}(t)=A t e^{2 t} & y^{\prime}-y=e^{t} \\
\text { (D) } y_{p}(t)=A e^{t} & e^{-t} y^{\prime}-e^{-t} y=1 \\
\text { (E) } y_{p}(t)=A t e^{t} & y=t e^{t}+C e^{t}
\end{array}
$$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{array}{rr}
\text { (A) } y_{p}(t)=A e^{2 t} & \left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0! \\
\text { (B) } y_{p}(t)=A e^{-2 t} & \text { • Simpler example in which } \\
\text { the RHS is a solution to the } \\
\text { homogeneous problem. } \\
\text { (C) } y_{p}(t)=A t e^{2 t} & y^{\prime}-y=e^{t} \\
\text { (D) } y_{p}(t)=A e^{t} & e^{-t} y^{\prime}-e^{-t} y=1 \\
\text { (E) } y_{p}(t)=A t e^{t} & y=t e^{t}+C e^{t}
\end{array}
$$

- General rule: when your guess at y_{p} makes LHS=0, try multiplying it by $t .{ }_{8}$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(\right.$ Ate $\left.^{2 t}\right)$?
(A) $A=1$
(B) $A=4$
(C) $A=-4$
(D) $A=1 / 4$
(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$
(C) $A=-4$
(D) $A=1 / 4$
(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$

$$
\left(A t e^{2 t}\right)^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t}
$$

(C) $A=-4$
(D) $A=1 / 4$
(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$

$$
\begin{aligned}
\left(A t e^{2 t}\right)^{\prime \prime} & =2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t} \\
& =4 A e^{2 t}+4 A t e^{2 t}
\end{aligned}
$$

(C) $A=-4$
(D) $A=1 / 4$
(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$

$$
\begin{aligned}
\left(A t e^{2 t}\right)^{\prime \prime} & =2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t} \\
& =4 A e^{2 t}+4 A t e^{2 t}
\end{aligned}
$$

(C) $A=-4$
(D) $A=1 / 4$
$\left(A t e^{2 t}\right)^{\prime \prime}-4\left(A t e^{2 t}\right)=$
(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$
(C) $A=-4$
(D) $A=1 / 4$

$$
\begin{aligned}
& \left(A t e^{2 t}\right)^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t} \\
& \left(A t e^{2 t}\right)^{\prime \prime}-4\left(A t e^{2 t}\right)=
\end{aligned}
$$

(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$
(C) $A=-4$
(D) $A=1 / 4$

$$
\begin{aligned}
& \left(A t e^{2 t}\right)^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t} \\
& \left(A t e^{2 t}\right)^{\prime \prime}-4\left(A t e^{2 t}\right)=4 A e^{2 t}
\end{aligned}
$$

(E) $A=-1 / 4$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$
(C) $A=-4$
$\left(A t e^{2 t}\right)^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t}$
(D) $A=1 / 4$
$\left(A t e^{2 t}\right)^{\prime \prime}-4\left(A t e^{2 t}\right)=4 A e^{2 t}$
(E) $A=-1 / 4$

Need: $\quad=e^{2 t}$

Method of undetermined coefficients

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$
(C) $A=-4$
Δ (D) $A=1 / 4$

$$
\begin{aligned}
& \left(A t e^{2 t}\right)^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t} \\
& \left(A t e^{2 t}\right)^{\prime \prime}-4\left(A t e^{2 t}\right)=4 A e^{2 t}
\end{aligned}
$$

(E) $A=-1 / 4$

Need: $\quad=e^{2 t}$

Method of undetermined coefficients

- Example 8. Find the general solution to $y^{\prime \prime}-4 y=\cos (2 t)$.
- What is the form of the particular solution?
(A) $\quad y_{p}(t)=A \cos (2 t)$
(B) $\quad y_{p}(t)=A \sin (2 t)$
(C) $y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Method of undetermined coefficients

- Example 8. Find the general solution to $y^{\prime \prime}-4 y=\cos (2 t)$.
-What is the form of the particular solution?
\star (A) $\quad y_{p}(t)=A \cos (2 t)$
(B) $y_{p}(t)=A \sin (2 t)$
$\boldsymbol{\omega}$ (C) $y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Method of undetermined coefficients

- Example 8. Find the general solution to $y^{\prime \prime}-4 y=\cos (2 t)$.
-What is the form of the particular solution?
ω (A) $y_{p}(t)=A \cos (2 t)$
(B) $\quad y_{p}(t)=A \sin (2 t)$
(C) $y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $\quad y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Challenge: What small change to the DE makes (D) correct?

Method of undetermined coefficients

- Example 8. Find the general solution to $y^{\prime \prime}+y^{\prime}-4 y=\cos (2 t)$.
- What is the form of the particular solution?
(A) $\quad y_{p}(t)=A \cos (2 t)$
(B) $y_{p}(t)=A \sin (2 t)$
(C) $y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Method of undetermined coefficients

- Example 8. Find the general solution to $y^{\prime \prime}+y^{\prime}-4 y=\cos (2 t)$.
- What is the form of the particular solution?
(A) $\quad y_{p}(t)=A \cos (2 t)$
(B) $\quad y_{p}(t)=A \sin (2 t)$
$\hat{\Delta}(\mathrm{C}) \quad y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $\quad y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Method of undetermined coefficients

- Example 9. Find the general solution to $y^{\prime \prime}-4 y=t^{3}$.
-What is the form of the particular solution?
(A) $\quad y_{p}(t)=A t^{3}$
(B) $\quad y_{p}(t)=A t^{3}+B t^{2}+C t$
(C) $y_{p}(t)=A t^{3}+B t^{2}+C t+D$
(D) $y_{p}(t)=A t^{3}+B e^{2 t}+C e^{-2 t}$
(E) Don't know.

Method of undetermined coefficients

- Example 9. Find the general solution to $y^{\prime \prime}-4 y=t^{3}$.
-What is the form of the particular solution?
(A) $\quad y_{p}(t)=A t^{3}$
(B) $y_{p}(t)=A t^{3}+B t^{2}+C t$
$\hat{\Delta}(\mathrm{C}) \quad y_{p}(t)=A t^{3}+B t^{2}+C t+D$
(D) $y_{p}(t)=A t^{3}+B e^{2 t}+C e^{-2 t}$
(E) Don't know.

Method of undetermined coefficients

- Example 9. Find the general solution to $y^{\prime \prime}-4 y=t^{3}$.
-What is the form of the particular solution?
(A) $\quad y_{p}(t)=A t^{3}$
(B) $y_{p}(t)=A t^{3}+B t^{2}+C t$
$\hat{\Delta}$ (C) $y_{p}(t)=A t^{3}+B t^{2}+C t+D$
(D) $y_{p}(t)=A t^{3}+B e^{2 t}+C e^{-2 t}$
(E) Don't know. waste of time including solution to homogeneous eq.

Method of undetermined coefficients

- When RHS is sum of terms:

$$
\begin{gathered}
y^{\prime \prime}-4 y=\cos (2 t)+t^{3} \\
y_{p}(t)=A \cos (2 t)+B \sin (2 t)+C t^{3}+D t^{2}+E t+F
\end{gathered}
$$

Method of undetermined coefficients

- When RHS is sum of terms:

$$
\begin{gathered}
y^{\prime \prime}-4 y=\cos (2 t)+t^{3} \\
y_{p}(t)=A \cos (2 t)+B \sin (2 t)+C t^{3}+D t^{2}+E t+F
\end{gathered}
$$

or

$$
\begin{gathered}
y_{p_{1}}(t)=A \cos (2 t)+B \sin (2 t) \\
y_{p_{2}}(t)=C t^{3}+D t^{2}+E t+F \\
y_{p}(t)=y_{p_{1}}(t)+y_{p_{2}}(t)
\end{gathered}
$$

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?
(A) $y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t$
(B) $y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E$
(C) $y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right)$
(D) $y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F$
(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& y_{p}(t)=A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t \\
& \text { (B) } y_{p}(t)=A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
& \text { (C) } y_{p}(t)=A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
& y_{p}(t)=A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
& \text { (D) } y_{p}(t)=A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
& \text { (E) Don't know / still thinking. }
\end{aligned}
$$

For each wrong answer, for what DE is it the correct form?

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } \begin{aligned}
y_{p}(t) & =\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
\text { (B) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t}
\end{aligned} \\
& \text { (C) } \begin{aligned}
y_{p}(t)=\left(A t^{3}+B t^{2}\right. & +C t) e^{2 t} \\
& \quad+\left(D t^{3}+E t^{2}+F t\right) e^{-2 t}
\end{aligned} \\
& \text { (D) } y_{p}(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
& \text { (B) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& \text { (C) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
&+\left(D t^{3}+E t^{2}+F t\right) e^{-2 t} \\
& 0 \text { (D) } y_{p}(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t}
\end{aligned}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

- Example. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
& \text { (A) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
& \text { (B) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& \text { (C) } y_{p}(t)=\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& +\left(D t^{3}+E t^{2}+F t\right) e^{-2 t}
\end{aligned}
$$

(D) $y_{p}(t)=\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t}$

$$
y_{p}(t)=t\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t}
$$

(E) Don't know / still thinking.

Method of undetermined coefficients

$$
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x}
$$

Method of undetermined coefficients

$$
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \quad y=e^{r x}
$$

Method of undetermined coefficients

$$
\begin{array}{rl}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} & y=e^{r x} \\
r^{2}+3 r-10=0
\end{array}
$$

Method of undetermined coefficients

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y=e^{r x} \\
r^{2}+3 r-10=0 \\
r=-5,2
\end{gathered}
$$

Method of undetermined coefficients

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
r^{2}+3 r-10=0 \\
r=-5,2
\end{gathered}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
& -10 y_{p}(x)= \\
& 3 y_{p}^{\prime}(x)= \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
& -10 y_{p}(x)=r \quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=r \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
y_{p}(x)=A x^{2} e^{-5 x} \\
y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
-10 y_{p}(x)= \\
3 y_{p}^{\prime}(x)= \\
y_{p}^{\prime \prime}(x)= \\
\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0}
\end{gathered}
$$

Method of undetermined coefficients

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
y_{p}(x)=A x^{2} e^{-5 x} \\
y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
-10 y_{p}(x)= \\
3 y_{p}^{\prime}(x)= \\
y_{p}^{\prime \prime}(x)= \\
\\
\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0}=x^{2} e^{-5 x}
\end{gathered}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
&-10 y_{p}(x)=\quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=\quad 6 A x e^{-5 x}-15 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0 \quad=x^{2} e^{-5 x}}
\end{aligned}
$$

Can't find A that works!

Method of undetermined coefficients

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x} \\
& y_{p}^{\prime}(x)=2 A x e^{-5 x}-5 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=2 A e^{-5 x}-10 A x e^{-5 x}-10 A x e^{-5 x}+25 A x^{2} e^{-5 x} \\
&-10 y_{p}(x)=\quad-10 A x^{2} e^{-5 x} \\
& 3 y_{p}^{\prime}(x)=\quad 6 A x e^{-5 x}-15 A x^{2} e^{-5 x} \\
& y_{p}^{\prime \prime}(x)=\frac{2 A e^{-5 x}-20 A x e^{-5 x}+25 A x^{2} e^{-5 x}}{2 A e^{-5 x}-14 A x e^{-5 x}+0 \quad=x^{2} e^{-5 x}}
\end{aligned}
$$

Can't find A that works! Need 3 unknowns to match all 3 terms.

Method of undetermined coefficients

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x}
\end{gathered}
$$

Method of undetermined coefficients

$$
\begin{gathered}
y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x}
\end{gathered}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.
Need 3 unknowns but not including $e^{-5 x}$.

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.
Need 3 unknowns but not including $e^{-5 x}$.

$$
y_{p}(x)=A x^{3} e^{-5 x}+B x^{2} e^{-5 x}+C x e^{-5 x}
$$

Method of undetermined coefficients

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}-10 y=x^{2} e^{-5 x} \\
& y_{h}(x)=C_{1} e^{-5 x}+C_{2} e^{2 x} \\
& y_{p}(x)=A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x} \\
& y_{p}^{\prime}(x) \text { involves } x^{2}, x, 1 \\
& y_{p}^{\prime \prime}(x) \text { involves } x^{2}, x, 1
\end{aligned}
$$

But $e^{-5 x}$ gets killed by the operator so C disappears - only 2 unknowns for matching.
Need 3 unknowns but not including $e^{-5 x}$.

$$
\begin{aligned}
y_{p}(x) & =A x^{3} e^{-5 x}+B x^{2} e^{-5 x}+C x e^{-5 x} \\
& =x\left(A x^{2} e^{-5 x}+B x e^{-5 x}+C e^{-5 x}\right)
\end{aligned}
$$

Method of undetermined coefficients

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).

Method of undetermined coefficients

- Summary - finding a particular solution to $L[y]=g(t)$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and \sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times\left(\right.$ part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.

Method of undetermined coefficients

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times\left(\right.$ part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.
- For sums, group terms into families and include a term for each. You can even find a y_{p} for each family separately and add them up.

Method of undetermined coefficients

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times($ part of the $g(t)$ family $)$, is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.
- For sums, group terms into families and include a term for each. You can even find a y_{p} for each family separately and add them up.
- Works for products of functions - be sure to include the whole family!

Method of undetermined coefficients

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and \sin)
- If part of the $g(t)$ family is a solution to the homogeneous ($\mathrm{h}-$)problem, use $\mathrm{t} \times(\mathrm{g}(\mathrm{t})$ family).
- If $t \times$ (part of the $g(t)$ family), is a solution to the h-problem, use $t^{2} \times(g$ (t) family). etc.
- For sums, group terms into families and include a term for each. You can even find a y_{p} for each family separately and add them up.
- Works for products of functions - be sure to include the whole family!
- Never include a solution to the h-problem as it won't survive L[]. Just make sure you aren't missing another term somewhere.

Method of undetermined coefficients

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p s}$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember
- If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.

Method of undetermined coefficients

- Do lots of these problems and the trends will become clear.
- Try different $y_{p} s$ and see what goes wrong - this will help you see what must happen when things go right.
- Two crucial facts to remember
- If you try a form and you can make LHS=RHS with some choice for the coefficients then you're done.
- If you can't, your guess is most likely missing a term(s).

