Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

0

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}=x_{1}^{\prime}+x_{2}^{\prime}=x_{1}^{\prime}+4 x_{1}+x_{2} \\
& x_{2}=x_{1}^{\prime}-x_{1} \\
& x_{1}^{\prime \prime}=x_{1}^{\prime}+4 x_{1}+x_{1}^{\prime}-x_{1} \\
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{gathered}
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
r=-1,3
\end{gathered}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{gathered}
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
x_{1}=C_{1} e^{-t}+C_{2} e^{3 t}
\end{gathered}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{gathered}
x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
x_{1}=C_{1} e^{-t}+C_{2} e^{3 t}
\end{gathered}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=x_{1}^{\prime}-x_{1}=-C_{1} e^{-t}+3 C_{2} e^{3 t}-C_{1} e^{-t}-C_{2} e^{3 t} \\
& =-2 C_{1} e^{-t}+2 C_{2} e^{3 t}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \quad \begin{array}{c}
\lambda_{1}=-1
\end{array} \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{R e c a l l :} \\
& \left.\mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \quad \begin{array}{c}
\lambda_{2}=3 \\
-2
\end{array}\right) \\
& \mathbf{v}_{\mathbf{2}}=\binom{1}{25}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \quad \begin{array}{|cc|}
\lambda_{2}=3 \\
\mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
\mathbf{v}_{\mathbf{2}}=\binom{1}{25}
\end{array}
\end{aligned}
$$

Solving a system of ODEs

- The following is a shortcut approach for 2×2 systems, mostly for insight.
- Find the general solution to the system of equations

$$
\begin{aligned}
& x_{1}^{\prime}=x_{1}+x_{2} \\
& x_{2}^{\prime}=4 x_{1}+x_{2}
\end{aligned} \quad \text { or equivalently } \quad \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
$$

- Convert this into a second order equation in only one unknown (x_{1}):

$$
\begin{aligned}
& x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0 \quad \rightarrow r^{2}-2 r-3=0 \\
& x_{1}=C_{1} e^{-t}+C_{2} e^{3 t} \quad r=-1,3 \\
& x_{2}=-2 C_{1} e^{-t}+2 C_{2} e^{3 t} \\
& \mathbf{x}=\binom{x_{1}}{x_{2}}=C_{1} \varepsilon^{-t}\binom{1}{-2}+C_{2} 3 t\binom{1}{2} \quad \text { Recall: } \\
& \lambda_{1}=-1 \\
& \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
& \mathbf{v}_{2}=3 \\
& \mathbf{v}_{\mathbf{2}}=\binom{1}{25}
\end{aligned}
$$

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,
- Assemble general solution by summing up terms of the form

$$
C_{n} e^{\lambda_{n} t} \mathbf{v}_{\mathbf{n}}
$$

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,
- Assemble general solution by summing up terms of the form

$$
C_{n} e^{\lambda_{n} t} \mathbf{v}_{\mathbf{n}}
$$

- This works when eigenvalues are distinct or, if there are repeated eigenvalues still giving N independent eigenvectors.

Solving a system of ODEs

- You can use the second order trick for 2×2 but in general,
- Find eigenvalues and eigenvectors of A,
- Assemble general solution by summing up terms of the form

$$
C_{n} e^{\lambda_{n} t} \mathbf{v}_{\mathbf{n}}
$$

- This works when eigenvalues are distinct or, if there are repeated eigenvalues still giving N independent eigenvectors.
- Other cases (not enough e-vectors or complex e-values) next class.

