Today

- Comment on pre-lecture problems
- Finish up with integrating factors
- The structure of solutions
- Separable equations

Problem Number

Consider the initial value problem

$$rac{dy}{dt}-6y=5e^{2t},\quad y(0)=A.$$

a. Find the solution.

y =

b. For what values of A does the above solution tend to ∞ , 0 or $-\infty$ as $t o \infty$?

Consider the initial value problem

$$rac{dy}{dt}-6y=5e^{2t},\quad y(0)=A.$$

a. Find the solution.

y =

b. For what values of A does the above solution tend to ∞ , 0 or $-\infty$ as $t \to \infty$?

As $t ightarrow\infty$,	
$y ightarrow\infty$ if $A\in$	
$y ightarrow 0$ if $A \in$	
$y ightarrow -\infty$ if $A\in$	

Consider the initial value problem

$$rac{dy}{dt}-6y=5e^{2t},\quad y(0)=A.$$

a. Find the solution.

y =

b. For what values of A does the above solution tend to ∞ , 0 or $-\infty$ as $t \to \infty$?

As $t ightarrow\infty$,	
$y ightarrow\infty$ if $A\in$	
$y ightarrow 0$ if $A \in$	
$y ightarrow -\infty$ if $A\in$	

Desmos demo: <u>https://www.desmos.com/calculator/ne9u9c2q3b</u>

• Given that
$$\frac{d}{dt}(t^2y(t)) = t^2\frac{dy}{dt} + 2ty$$

• if you're given the equation
$$t^2 \frac{dy}{dt} + 2ty = 0$$

arbitrary constant that appeared at an integration step

• you can rewrite is as $\frac{d}{dt} \left(t^2 y(t) \right) = 0$

- so the solution is $t^2y(t)=C$ or equivalently $y(t)=rac{C}{t^2}$.

• Solve the equation $t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$ (not brute force checking).

(A)
$$y(t) = -\cos(t) + C$$

(B) $y(t) = \frac{C - \cos(t)}{t^2}$
(C) $y(t) = \sin(t) + C$
(D) $y(t) = -\frac{1}{t^2}\cos(t)$

(E) Don't know.

• Solve the equation $t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$ (not brute force checking).

(A)
$$y(t) = -\cos(t) + C$$

(B) $y(t) = \frac{C - \cos(t)}{t^2}$ general solution
(although that's not
obvious)
(D) $y(t) = -\frac{1}{t^2}\cos(t)$ a particular solution

(E) Don't know.

• An initial condition is an added constraint on a solution.

• An initial condition is an added constraint on a solution.

- e.g. Solve
$$t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$$
 subject to the IC $y(\pi) = 0$.

• An initial condition is an added constraint on a solution.

• e.g. Solve
$$t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$$
 subject to the IC $y(\pi) = 0$.
(A) $y(t) = -\frac{C + \cos(\pi)}{\pi^2}$
(B) $y(t) = -\frac{1 - \cos(t)}{t^2}$
(C) $y(t) = \frac{1 + \cos(t)}{t^2}$
(D) $y(t) = -\frac{1 + \cos(t)}{t^2}$
(E) Don't know.

• An initial condition is an added constraint on a solution.

• e.g. Solve
$$t^2 \frac{dy}{dt} + 2ty(t) = \sin(t)$$
 subject to the IC $y(\pi) = 0$.
(A) $y(t) = -\frac{C + \cos(\pi)}{\pi^2}$
(B) $y(t) = -\frac{1 - \cos(t)}{t^2}$
(C) $y(t) = \frac{1 + \cos(t)}{t^2}$
(D) $y(t) = -\frac{1 + \cos(t)}{t^2}$
(E) Don't know.

• An Initial Value Problem (IVP) is a ODE together with an IC.

$$t\frac{dy}{dt} + 2y(t) = 1$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \qquad \rightarrow f(t) = t$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$
$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t}$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$
$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$
$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$
$$\frac{dy}{dt} + y(t) = 0$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$
$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$
$$\frac{dy}{dt} + y(t) = 0 \qquad \rightarrow f(t) = e^t$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$
$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$
$$\frac{dy}{dt} + y(t) = 0 \qquad \rightarrow f(t) = e^t$$
$$\frac{dy}{dt} + \cos(t)y(t) = 0$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$

$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$

$$\frac{dy}{dt} + y(t) = 0 \qquad \rightarrow f(t) = e^t$$

$$\frac{dy}{dt} + \cos(t)y(t) = 0 \qquad \rightarrow f(t) = e^{\sin(t)}$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$

$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$

$$\frac{dy}{dt} + y(t) = 0 \qquad \rightarrow f(t) = e^t$$

$$\frac{dy}{dt} + \cos(t)y(t) = 0 \qquad \rightarrow f(t) = e^{\sin(t)}$$

$$\frac{dy}{dt} + g'(t)y(t) = 0$$

$$t\frac{dy}{dt} + 2y(t) = 1 \qquad \rightarrow f(t) = t$$

$$t^2\frac{dy}{dt} + 4ty(t) = \frac{1}{t} \qquad \rightarrow f(t) = t^2$$

$$\frac{dy}{dt} + y(t) = 0 \qquad \rightarrow f(t) = e^t$$

$$\frac{dy}{dt} + \cos(t)y(t) = 0 \qquad \rightarrow f(t) = e^{\sin(t)}$$

$$\frac{dy}{dt} + g'(t)y(t) = 0 \qquad \rightarrow f(t) = e^{g(t)}$$

Technical definition of integrating factor

• For the general first order linear ODE

$$a(t)y' + b(t)y = g(t)$$

Technical definition of integrating factor

• For the general first order linear ODE

$$a(t)y' + b(t)y = g(t)$$

• Divide through by a(t) and define p(t) = b(t) / a(t) and q(t) = g(t) / a(t):

$$y' + p(t)y = q(t)$$

Technical definition of integrating factor

• For the general first order linear ODE

$$a(t)y' + b(t)y = g(t)$$

• Divide through by a(t) and define p(t) = b(t) / a(t) and q(t) = g(t) / a(t):

$$y' + p(t)y = q(t)$$

• The function that, when multiplied through, make the LHS a perfect product rule is called the integrating factor.

• General case - all first order linear ODEs can be written in the form

$$\frac{dy}{dt} + p(t)y = q(t)$$

· General case - all first order linear ODEs can be written in the form

$$\frac{dy}{dt} + p(t)y = q(t)$$

- The appropriate integrating factor is $e^{\int p(t)dt}$.

General case - all first order linear ODEs can be written in the form

$$\frac{dy}{dt} + p(t)y = q(t)$$

- The appropriate integrating factor is $e^{\int p(t)dt}$
- The equation can be rewritten $\ \frac{d}{dt}\left(e^{\int p(t)dt}y
 ight)=e^{\int p(t)dt}q(t)$ which

is solvable provided you can find the antiderivative of the right hand side.

General case - all first order linear ODEs can be written in the form

$$\frac{dy}{dt} + p(t)y = q(t)$$

- The appropriate integrating factor is $e^{\int p(t)dt}$
- The equation can be rewritten $\ \frac{d}{dt}\left(e^{\int p(t)dt}y
 ight)=e^{\int p(t)dt}q(t)$ which

is solvable provided you can find the antiderivative of the right hand side.

$$e^{\int p(t)dt}y(t) = \int e^{\int p(t)dt}q(t)dt + C$$

General case - all first order linear ODEs can be written in the form

$$\frac{dy}{dt} + p(t)y = q(t)$$

- The appropriate integrating factor is $e^{\int p(t)dt}$
- The equation can be rewritten $\ \frac{d}{dt}\left(e^{\int p(t)dt}y
 ight)=e^{\int p(t)dt}q(t)$ which

is solvable provided you can find the antiderivative of the right hand side.

$$e^{\int p(t)dt}y(t) = \int e^{\int p(t)dt}q(t)dt + C$$
$$y(t) = e^{-\int p(t)dt} \int e^{\int p(t)dt}q(t)dt + Ce^{-\int p(t)dt}$$

• When the equation is of the form (called homogeneous)

$$\frac{dy}{dt} + p(t)y = 0$$

the solution is

$$y(t) = C\mu(t)^{-1}$$

• where

$$\mu(t) = \exp\left(\int p(t)dt\right)$$

• is the integrating factor.

$$\frac{dy}{dt} + p(t)y = q(t)$$

• When the equation is of the form (called nonhomogeneous)

$$\frac{dy}{dt} + p(t)y = q(t)$$

• the solution is $y(t) = k(t) + C\mu(t)^{-1}$

$$\frac{dy}{dt} + p(t)y = q(t)$$

- the solution is $y(t) = k(t) + C\mu(t)^{-1}$
- where k(t), as given earlier, involves no arbitrary constants.

$$\frac{dy}{dt} + p(t)y = q(t)$$

- the solution is $y(t) = k(t) + C\mu(t)^{-1}$
- where k(t), as given earlier, involves no arbitrary constants.
- Think about this expression as $y(t) = y_p(t) + y_h(t)$

$$\frac{dy}{dt} + p(t)y = q(t)$$

- the solution is $y(t) = k(t) + C\mu(t)^{-1}$
- where k(t), as given earlier, involves no arbitrary constants.
- Think about this expression as $y(t) = y_p(t) + y_h(t)$
- Directly analogous to solving the vector equations $A\overline{x}=0$ and $A\overline{x}=b$.

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

(A)
$$y(t) = t^2$$

(B) $y(t) = t^2 + C \frac{1}{t^2}$
(C) $y(t) = t^2 + C$
(D) $y(t) = C \frac{1}{t^2}$
(E) Don't know.

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C\frac{1}{t^2}$$

(A)
$$y(t) = t^2$$

(B) $y(t) = t^2 + C \frac{1}{t^2}$
(C) $y(t) = t^2 + C$
(D) $y(t) = C \frac{1}{t^2}$
(E) Don't know.

ヽーノ

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C\frac{1}{t^2}$$

(A)
$$y(t) = t^2$$

(B) $y(t) = t^2 + C \frac{1}{t^2}$
(C) $y(t) = t^2 + C$
(D) $y(t) = C \frac{1}{t^2}$
(E) Don't know.

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C\frac{1}{t^2}$$

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C \frac{1}{t^2}$$

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C \frac{1}{t^2}$$

• Find the general solution to

$$t\frac{dy}{dt} + 2y = 4t^2$$

- and plot a few of the integral curves.
- Integral curve the graph of a solution to an ODE.

$$y(t) = t^2 + C\frac{1}{t^2}$$

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

 and plot a few of the integral curves.

(A) $y(t) = e^{-t}$ (B) $y(t) = e^{-t} + Ce^{3t}$ (C) $y(t) = e^{-3t}$ (D) $y(t) = e^{-4t} + C$ (E) Don't know.

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

$$y(t) = e^{-t} + Ce^{3t}$$

(A)
$$y(t) = e^{-t}$$

(B) $y(t) = e^{-t} + Ce^{3t}$
(C) $y(t) = e^{-3t}$
(D) $y(t) = e^{-4t} + C$
(E) Don't know.

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

$$y(t) = e^{-t} + Ce^{3t}$$

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

$$y(t) = e^{-t} + Ce^{3t}$$

• Find the general solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

$$y(t) = e^{-t} + Ce^{3t}$$

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

- depending on C, how many different results are possible for
 - $\lim_{t \to \infty} y(t)$?

(A) 0

(B) 1

(C) 2

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

- depending on C, how many different results are possible for
 - $\lim_{t \to \infty} y(t)$?

(A) 0

(B) 1

(C) 2

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

- depending on C, how many different results are possible for
 - $\lim_{t \to \infty} y(t)$?

(A) 0

(B) 1

(C) 2

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

- depending on C, how many different results are possible for
 - $\lim_{t \to \infty} y(t)$?

(A) 0

(B) 1

(C) 2

• If y(t) is a particular solution to

$$\frac{dy}{dt} - 3y = -4e^{-t}$$

- depending on C, how many different results are possible for
 - $\lim_{t \to \infty} y(t)$?

(A) 0

(B) 1

(C) 2

