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Comment on pre-lecture problems

Finish up with integrating factors

The structure of solutions

Separable equations
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Desmos demo: https://www.desmos.com/calculator/neQu9c293b



https://www.desmos.com/calculator/ne9u9c2q3b

Method of integrating factors

- Given that i (t2y(t)) = ¢? 4y - 2ty

dt dt
d
. if you're given the equation 1 J -2ty = 0
dt arbitrary constant
that appeared at an
d integration step
* you can rewrite is as o (tzy(t)) = ( /

C
» so the solution is t2y(t) = (' orequivalently (t) = 13



Method of integrating factors

» Solve the equation £ S - 2ty (t) = sin(t) (not brute force checking).

i

(A) y(t) = —cos(t) +C
() —

) y(t) = <0

(C) y(t) =sin(t) + C

1
(D) y(t) = —-5 cos(t)

(E) Don’t know.



Method of integrating factors

» Solve the equation £ S - 2ty (t) = sin(t) (not brute force checking).

dt
(A) y(t) = —cos(t) +C
C' — cos(t
y(t) = 2 ) general solution
(although that’s not
(C) y(t) =sin(t) + C obvious
1
y(t) — +2 COS(t) a particular solution

(E) Don’t know.
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> dy .
- e.g. Solve T o | Zty(t) — Sln(t) subject to the IC y(w) = 0.
C + cos(m
(A) y(t) o 2 ( )
-
1 — cos(t
B) y(t) = > )
(E) Don’t know.
1 4+ cos(t
© y(t) = — 0
1 + cos(t
(D) y(t) = )




Initial conditions (IC) and initial value problems (IVP)

« An IS an added constraint on a solution.
5 dy :
- e.g. Solve T o | Zty(t) — Sln(t) subject to the IC y(w) = 0.
C + cos(
(A) y(t) o 2 ( )
-
1 — cos(t
B) y(t) = > )
(E) Don’t know.
1 + cos(t
© y(t) = — 0
1 + cos(t
D) y(t) = > )

 An Initial Value Problem (IVP) is a ODE together with an IC.
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product rule?
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Method of integrating factors

* What function should we multiply through by to make the LHS a perfect
product rule?

tdt - 2y(t) =1 — f(t) =t

12 Cfg Aty (1) :% s f(t) = £2

Y () =0 ~F(t) =
Wt eos(u) =0 = f(0) =
dy

dt



Method of integrating factors

* What function should we multiply through by to make the LHS a perfect
product rule?

t—r +2y(t) =1 — f(t) =t
t Cfi‘z -4ty (t) :% — f(t) =1t°
CCZZZZ Fy(t) =0 — f(t) =€
W cos(tyt) =0 — (1) = O
Wy gyt =0 — f(t) = s

dt
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Technical definition of integrating factor

* For the general first order linear ODE

a(t)y’ +b(t)y = g(t)

* Divide through by a(t) and define p(t) = b(t) / a(t) and q(t) = g(t) / a(t) :

y' +p(t)y = q(t)

* The function that, when multiplied through, make the LHS a perfect product
rule is called the integrating factor.
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Method of integrating factors

« (General case - all first order linear ODEs can be written in the form
dy
dit

-p(t)y = q(t)

fp(t)dt.

* The appropriate integrating factor is €

d
* The equation can be rewritten E (efp(t)dty) = efp(t)dtq(t) which

IS solvable provided you can find the antiderivative of the right hand side.

efp(t)dty(t) — /efp(t)dtq(t)dt +C

y(t) = e Pty / e POt ()it 4 e S PO



The structure of solutions

* When the equation is of the form (called homogeneous)

* the solution is

 where

p(t) = exp ( / p(t)dt>

* is the integrating factor.

10
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* When the equation is of the form (called nhonhomogeneous)

dt
- the solutionis Y(t) = k(t) + Cﬂ(t)_l

- where k(t), as given eatrlier, involves no arbitrary constants.
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The structure of solutions

* When the equation is of the form (called nhonhomogeneous)

- p(t)y = q(t

- T pt)y =q(t)

- the solutionis Y(t) = k(t) + C,u(t)_l

- where k(t), as given eatrlier, involves no arbitrary constants.
+ Think about this expression as Y(t) = Yy, (t) + yn (1)

- Directly analogous to solving the vector equations Az = 0and Ax = 0.

11



—Xamples

 Find the general solution to

d?/ 2
t - 2y = 4t
ar Y

- and plot a few of the integral curves.

* Integral curve - the graph of a solution
to an ODE.
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—Xamples

 Find the general solution to

tf;t/ -9y — 4f? @ y(t) =1
.+ and plot a few of the integral curves. B) y(t) =12+ Cti?
+ Integral ounve - the graph of asoluion (C) (¢) = ¢2 4 C
O y(t) = O

(E) Don’t know.
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—Xamples

 Find the general solution to

dy
dt

- and plot a few of the integral curves.

t - 2y = 4t°

* Integral curve - the graph of a solution
to an ODE.

1

A y(t) =t
B y(t) = £ +cti2
©) y(t)=t"+C

1

(E) Don’t know.
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—Xamples

 Find the general solution to

dy
dt

- and plot a few of the integral curves.

t - 2y = 4t°

* Integral curve - the graph of a solution
to an ODE.

1

« Steps: divide through by t, calculate
(), take antiderivatives, solve fory.
Or shortcut.

A y(t) =1t
B) y(t) =1 +C o
©C) yt)=t*+C
1
D) y(t)=C-

(E) Don’t know.
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t - 2y = 4t
ar Y
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* Integral curve - the graph of a solution
to an ODE.
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—Xamples

 Find the general solution to

dy 2
t - 2y = 4t
ar Y

- and plot a few of the integral curves.

* Integral curve - the graph of a solution
to an ODE.

1

« Steps: divide through by t, calculate
(), take antiderivatives, solve fory.
Or shortcut.

o

10

C <0
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