Today

- General solution for complex eigenvalues case.
- Shapes of solutions for complex eigenvalues case.

Calculating eigenvalues - trace/det shortcut

- For the general matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

- find the characteristic equation and solve it to find the eigenvalues.

$$
\begin{array}{r}
\text { (B) } \lambda^{2}+(0+c) \lambda+a c-0 a=0 \\
\text { (C) } \lambda^{2}-(a+d) \lambda+a d-b c=0 \\
\text { (D) } \lambda^{2}+(a-d) \lambda+a d+b c=0 \\
\text { (E) I don't know how to find eigenvalues. }
\end{array}
$$

Complex eigenvalues - example

- Find the general solution to $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right) \mathbf{x}$.
- The eigenvalues are
ω (A) $\lambda=1 \pm 2 i$

$$
A-\lambda_{1} I=\left(\begin{array}{cc}
1-(1+2 i) & 1 \\
-4 & 1-(1+2 i)
\end{array}\right)
$$

(B) $\lambda=-1,3$
(C) $\lambda=2 \pm 4 i$
(D) $\lambda=-2,6$

$$
=\left(\begin{array}{cc}
-2 i & 1 \\
-4 & -2 i
\end{array}\right) \times \frac{1}{2} i
$$

$$
\sim\left(\begin{array}{ll}
-2 i & 1 \\
-2 i & 1
\end{array}\right)
$$

$$
\mathbf{v}_{\mathbf{1}}=\binom{1}{2 i}
$$

(E) I don't know how to find eigenvalues.

$$
\mathbf{v}_{\mathbf{2}}=\binom{1}{-2 i}
$$

Complex eigenvalues - example

- We could just write down a (complex valued) general solution:

$$
\mathbf{x}(\mathbf{t})=C_{1} e^{(1+2 i) t}\binom{1}{2 i}+C_{2} e^{(1-2 i) t}\binom{1}{-2 i}
$$

- But we want real valued solutions.
- Recall the sum and difference trick - it says that real and imaginary parts of a complex solution are themselves solutions.

Complex eigenvalues - example

- Expand one solution (and recall its conjugate is also a solution):

$$
\begin{aligned}
\mathbf{x}(\mathbf{t})= & e^{(1+2 i) t}\binom{1}{2 i} \\
& =e^{t}(\cos (2 t)+i \sin (2 t))\left(\binom{1}{0}+\binom{0}{2} i\right) \\
= & \frac{e^{t}\left[\binom{1}{0} \cos (2 t)-\binom{0}{2} \sin (2 t)\right]}{\left.+e^{t}\left[\binom{1}{0} \sin (2 t)+\binom{0}{2} \cos (2 t)\right)\right]}
\end{aligned}
$$

$$
\frac{1}{2}\left(e^{(1+2 i) t}\binom{1}{2 i}+e^{(1-2 i) t}\binom{1}{-2 i}\right)=
$$

$$
\frac{1}{2 i}\left(e^{(1+2 i) t}\binom{1}{2 i}-e^{(1-2 i) t}\binom{1}{-2 i}\right)=
$$

Complex eigenvalues - general case

- Find e-values, $\begin{aligned} \lambda=\alpha \pm \beta i \text {, and e-vectors, } \mathbf{v} & =\binom{a_{1}}{a_{2}} \pm i\binom{b_{1}}{b_{2}} . \\ & =\text { (a) }+ \text { (b) }\end{aligned}$
- Using method on previous slide, you should get:

$$
\begin{array}{r}
\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}\left(\binom{a_{1}}{a_{2}} \cos (\beta t)-\binom{b_{1}}{b_{2}} \sin (\beta t)\right)\right. \\
\left.+C_{2}\left(\binom{a_{1}}{a_{2}} \sin (\beta t)+\binom{b_{1}}{b_{2}} \cos (\beta t)\right)\right] \\
\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1} \text { acos } \cos (\beta t)-\text { b } \sin (\beta t)\right) \\
\left.\left.+C_{2} \text { (a) } \sin (\beta t)+\text { b } \cos (\beta t)\right)\right]
\end{array}
$$

Complex eigenvalues - example

- Suppose you find eigenvalue $\lambda=2 \pi i$ and eigenvector $\mathbf{v}=\binom{1}{i}$. Which of the following is a solution to the original equation?
$\boldsymbol{\omega}(\mathrm{A}) \mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)$
(B) $\mathbf{x}(\mathbf{t})=\binom{0}{1} \cos (2 \pi t)-\binom{1}{0} \sin (2 \pi t)$
$\boldsymbol{\omega}(\mathrm{C}) \mathbf{x}(\mathbf{t})=\binom{0}{1} \cos (2 \pi t)+\binom{1}{0} \sin (2 \pi t)$
(D) $\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)+\binom{0}{1} \sin (2 \pi t)$

Complex eigenvalues - example

- Suppose you find eigenvalue $\lambda=2 \pi i$ and eigenvector $\mathbf{v}=\binom{1}{i}$. Which of the following is a solution to the original equation?

$$
\begin{aligned}
& \overline{\mathbf{x}}(\mathbf{t})=e^{2 \pi i t}\binom{1}{i} \\
&=(\cos (2 \pi t)+i \sin (2 \pi t))\binom{1}{i} \\
&=\binom{\cos (2 \pi t)+i \sin (2 \pi t))}{-\sin (2 \pi t)+i \cos (2 \pi t))} \\
& \text { nance the } \\
& \text { entry }=\frac{\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)}{} \\
& \text { dep. }\left.+i\left[\begin{array}{l}
0 \\
1
\end{array}\right) \cos (2 \pi t)+\binom{1}{0} \sin (2 \pi t)\right]
\end{aligned}
$$ parts as two indef. solutions

Complex eigenvalues - example

- But what about $\lambda_{2}=-2 \pi i$ and $\mathbf{v}_{\mathbf{2}}=\binom{1}{-i}$?

$$
\begin{aligned}
\overline{\mathbf{x}}(\mathbf{t}) & =e^{-2 \pi i t}\binom{1}{-i} \\
& =(\cos (-2 \pi t)+i \sin (-2 \pi t))\binom{1}{-i} \\
& =\binom{\cos (2 \pi t)-i \sin (2 \pi t))}{-\sin (2 \pi t)-i \cos (2 \pi t))}
\end{aligned}
$$

$$
=\frac{\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)}{} \frac{\left.\Theta\left[\begin{array}{l}
0 \\
1
\end{array}\right) \cos (2 \pi t)+\binom{1}{0} \sin (2 \pi t)\right]}{}
$$

Complex eigenvalues - example

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)
$$

- What happens as t increases?
(A) The vector rotates clockwise.
(B) The vector rotates counterclockwise.
(C) The tip of the vector maps out a circle in the first quadrant.
(D) The tip of the vector maps out a circle in the fourth quadrant.
(E) Explain please.

Complex eigenvalues - example

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)
$$

Complex eigenvalues - example

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \cos (2 \pi t)-\binom{0}{1} \sin (2 \pi t)
$$

Fastest method: at $t=0, \cos (t)=1$ and decreasing, $-\sin (t)=0$ and increasing.

$$
\begin{aligned}
& \mathbf{x}(\mathbf{0})=\rightarrow-\quad=\rightarrow \\
& \mathrm{x}\left(\frac{1}{4}\right)=\quad . \quad-\uparrow= \\
& x\left(\frac{1}{2}\right)=\longleftarrow-\quad=\longleftarrow \\
& \mathrm{x}\left(\frac{3}{4}\right)=\quad-\quad=\uparrow \\
& \mathrm{x}(\mathbf{1})=\rightarrow-\quad=
\end{aligned}
$$

Complex eigenvalues - example

- Same equation, initial condition chosen so that $\mathrm{C}_{1}=0$ and $\mathrm{C}_{2}=1$.

$$
\mathbf{x}(\mathbf{t})=\binom{1}{0} \sin (2 \pi t)+\binom{0}{1} \cos (2 \pi t)
$$

$t=0$

- What happens as tincreases?
(A) The vector rotates clockwise.
(B) The vector rotates counterclockwise.
(C) The tip of the vector maps out a circle in the first quadrant.
(D) The tip of the vector maps out
- "Same" solyti(qt) as beftrétusta $\cos (\beta t)$ a dpacient (fita) second quadrant. $\pi / 2$ delayed.

Complex eigenvalues - general case

- Looking at the general solution again...

$$
\begin{aligned}
& \mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))\right. \\
& \left.\quad+C_{2}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))\right]
\end{aligned}
$$

- Both parts rotate in the exact same way but the C_{2} part is delayed by a quarter phase.
- If an initial condition lies neither parallel to vector a nor to vector $\mathbf{b}, \mathrm{C}_{1}$ and C2 allow for intermediate phases to be achieved.
- $\mathbf{x}(\mathbf{t})$ can be rewritten (using trig identities) as

$$
\mathbf{x}(\mathbf{t})=M e^{\alpha t}(\mathbf{a} \cos (\beta t-\phi)-\mathbf{b} \sin (\beta t-\phi))
$$

where M and ϕ are constants to replace C_{1} and C_{2}.

Complex eigenvalues - example

- Back to our earlier example where we found the general solution

$$
\begin{aligned}
& \mathbf{x}(\mathbf{t})=e^{t}\left(C_{1}\left(\binom{1}{0} \cos (2 t)-\binom{0}{2} \sin (2 t)\right)\right. \\
& \left.\quad+C_{2}\left(\binom{1}{0} \sin (2 t)+\binom{0}{2} \cos (2 t)\right)\right)
\end{aligned}
$$

(B) $\hat{\imath}$

(C)

(D)
(E) Explain, please.

