
Today

• General solution for complex eigenvalues case.


• Shapes of solutions for complex eigenvalues case.



(A)  


(B)  


(C)  


(D)  


(E) I don’t know how to find eigenvalues.

Calculating eigenvalues - trace/det shortcut

• For the general matrix


• find the characteristic equation and solve it to find the eigenvalues.

�2 + (b + c)� + ac� bd = 0

�2 + (ad� bc)� + a + d = 0

�2 + (a� d)� + ad + bc = 0

A =
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a b
c d

◆

�2 � tr(A)� + det(A) = 0

�2 � (a + d)� + ad� bc = 0



Complex eigenvalues - example

• Find the general solution to                                    . 
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• The eigenvalues are

(A)  


(B)  


(C)  


(D)  


(E) I don’t know how to find eigenvalues.

� = 1± 2i
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� = �2, 6
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• The eigenvectors are . . .



Complex eigenvalues - example

• We could just write down a (complex valued) general solution:

x(t) = C1e
(1+2i)t

✓
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• But we want real valued solutions. 


• Recall the sum and difference trick - it says that real and imaginary parts 
of a complex solution are themselves solutions.




Complex eigenvalues - example

x(t) = e(1+2i)t
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• Expand one solution (and recall its conjugate is also a solution):
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Complex eigenvalues - general case

• Find e-values,                        , and e-vectors,                                       .  


• Using method on previous slide, you should get:

⇤ = �± ⇥i
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+C2 (a sin(�t) + b cos(�t))]
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Complex eigenvalues - example

• Suppose you find eigenvalue                   and eigenvector                    . 
Which of the following is a solution to the original equation?
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Complex eigenvalues - example

• Suppose you find eigenvalue                   and eigenvector                    . 
Which of the following is a solution to the original equation?
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x(t) = e2�it
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• Sum and difference 
trick lets us take the 
Real and Imaginary 
parts as two indep. 
solutions



Complex eigenvalues - example
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Complex eigenvalues - example
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• What happens as t increases?


(A) The vector rotates clockwise.


(B) The vector rotates counter-
clockwise.


(C) The tip of the vector maps out 
a circle in the first quadrant.


(D) The tip of the vector maps out 
a circle in the fourth quadrant.


(E) Explain please.
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Complex eigenvalues - example
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Complex eigenvalues - example
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=Fastest method: at t=0, cos(t)=1 and 
decreasing, -sin(t)=0 and increasing. 



Complex eigenvalues - example

• Same equation, initial condition chosen so that C1=0 and C2=1.

x(t) =
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1
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✓
0
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x(t) = e�t
[C1 (a cos(�t)� b sin(�t))

+C2 (a sin(�t) + b cos(�t))]

t = 0

x(0)

• What happens as t increases?


(A) The vector rotates clockwise.


(B) The vector rotates counter-
clockwise.


(C) The tip of the vector maps out 
a circle in the first quadrant.


(D) The tip of the vector maps out 
a circle in the second quadrant.


(E) Explain please.

• “Same” solution as before, just 
π/2 delayed.
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Complex eigenvalues - general case

• Looking at the general solution again...

x(t) = e�t
[C1 (a cos(�t)� b sin(�t))

+C2 (a sin(�t) + b cos(�t))]

• Both parts rotate in the exact same way but the C2 part is delayed by a 
quarter phase.

• If an initial condition lies neither parallel to vector a nor to vector b, C1 
and C2 allow for intermediate phases to be achieved.

• x(t) can be rewritten (using trig identities) as 

x(t) = Me�t
(a cos(�t� ⇥)� b sin(�t� ⇥))

where       and     are constants to replace C1 and C2.M �



Complex eigenvalues - example

• Back to our earlier example where we found the general solution
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(A) (B) (C) (D)

(E) Explain, please.


