Today

- Systems with complex eigenvalue - example
- Systems with a repeated eigenvalue
- Summary of 2×2 systems with constant coefficients.

Complex eigenvalues (7.6) - example

- Back to our earier example: $\quad \mathrm{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right) \mathrm{x}$

$$
\begin{aligned}
\mathbf{x}(\mathbf{t})=e^{t}\left(C _ { 1 } \left(\binom{1}{0} \cos (2 t)-\right.\right. & \left.\binom{0}{2} \sin (2 t)\right) \\
& \left.+C_{2}\left(\binom{1}{0} \sin (2 t)+\binom{0}{2} \cos (2 t)\right)\right)
\end{aligned}
$$

(B) $\underset{\imath}{ }$

(D)

(E) Explain, please.

Repeated eigenvalues

- What happens when you get two identical eigenvalues?
- Two cases:

1. The single eigenvalue has two distinct eigenvectors.
2. There is only one eigenvector (matrix is defective).

$$
\text { 1. } \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \overline{\mathbf{x}} \quad \text { 2. } \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \overline{\mathbf{x}}
$$

Repeated eigenvalues

$$
\text { 1. } \begin{aligned}
& \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \overline{\mathbf{x}} \\
& \operatorname{det}(A-\lambda I)=(\lambda-3)^{2}=0 \\
& \lambda=3 \\
& (A-\lambda I) \mathbf{v}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \mathbf{v}=0
\end{aligned}
$$

All vectors solve this so choose any two independent vectors:

$$
\begin{gathered}
\mathbf{v}_{\mathbf{1}}=\binom{1}{0}, \mathbf{v}_{\mathbf{2}}=\binom{0}{1} \\
\mathbf{x}(t)=C_{1} e^{3 t}\binom{1}{0}+C_{2} e^{3 t}\binom{0}{1}
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2. } \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \overline{\mathbf{x}} \\
& \operatorname{det}(A-\lambda I)=\lambda^{2}-4 \lambda+4=0
\end{aligned}
$$

$$
\lambda=2
$$

$$
(A-\lambda I) \mathbf{v}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right) \mathbf{v}=0
$$

$$
\mathbf{v}=\binom{1}{-1} \quad \text { <-- only } 1 \text { evector! }
$$

$$
\mathbf{x}(t)=C_{1} e^{2 t} \mathbf{v}+C_{2} e^{3 t}(\mathbf{w}+t \mathbf{v})
$$

$$
(A-\lambda I) \mathbf{w}=\mathbf{v}
$$

$$
\mathbf{w}=\binom{-1}{0}
$$

Summary - homogeneous 2×2 systems

Steady states - constant solutions (set $x^{\prime}=0$ and solve $A x=0$).

- For the system of equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we always have $\mathbf{x}(t)=\mathbf{0}$ as a steady state solution.
- If A is singular matrix with $A \mathbf{v}=\mathbf{0}$ then $\mathbf{x}(t)=\mathbf{v}$ is also a steady state solution. In fact, $\mathbf{x}(t)=c \mathbf{V}$ is a steady state for all c. It is also an eigenvector associated with eigenvalue $\lambda=0$.
- If A is nonsingular then $\mathbf{x}(t)=\mathbf{0}$ is the only steady state.

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:
stable node
- real negative evalues

unstable node
- real positive evalues

saddle
- opposite sign evalues

stable spiral
- complex evalues, negative real part

unstable spiral
- complex evalues, positive real part

Summary - homogeneous 2×2 systems

- Quick way to determine how all other solutions behave:

$$
\begin{aligned}
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \\
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+a d-b c \\
& =\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) \\
& =0
\end{aligned}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\begin{equation*}
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \tag{0}
\end{equation*}
$$

ensures negative real part

$$
\lambda=\frac{\operatorname{tr} A}{2} \pm \frac{\sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$

$$
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
$$

(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When is the origin a stable node?

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \text { (A) }\left\{\begin{array}{l}
\operatorname{tr} A<0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A>0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right. \\
& \text { (C) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)>0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right. \\
& \text { (D) }\left\{\begin{array}{l}
\operatorname{tr} A>0, \operatorname{det}(A)>0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right.
\end{aligned}
$$

(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

