Today

- Systems with complex eigenvalues - how to figure out rotation
- Systems with a repeated eigenvalue
- Summary of 2×2 systems with constant coefficients.

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y
\end{aligned}
$$

(A) Solutions rotate clockwise and decay exponentially.
(B) Solutions grow exponentially without oscillating.
(C) Solutions rotate clockwise and grow exponentially.
(D) Solutions rotate counterclockwise and grow exponentially.

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y
\end{aligned}
$$

(A) Solutions rotate clockwise and decay exponentially.
(B) Solutions grow exponentially without oscillating.
(C) Solutions rotate clockwise and grow exponentially.
$\leadsto(\mathrm{D})$ Solutions rotate counterclockwise and grow exponentially.

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x}
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \quad \bar{x}=\binom{1}{0} \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

$$
\bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

$$
\bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{ll}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

$$
\begin{aligned}
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1}
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{ll}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

$$
\begin{aligned}
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1} \Rightarrow
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1} \Rightarrow \bar{x}^{\prime}=\binom{-8}{1}
\end{aligned}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{ll}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

Exponential growth

$$
\begin{aligned}
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1} \Rightarrow \bar{x}^{\prime}=\binom{-8}{1}
\end{aligned}
$$

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

$$
A(-x)=-A x)
$$

$$
\begin{aligned}
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1} \Rightarrow \bar{x}^{\prime}=\binom{-8}{1}
\end{aligned}
$$

Exponential growth

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& x^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

$$
A(-x)=-A x)
$$

$$
\begin{aligned}
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1} \Rightarrow \bar{x}^{\prime}=\binom{-8}{1}
\end{aligned}
$$

Counterclockwise rotation!

Direction of rotation in complex eigenvalue case

$$
\begin{aligned}
& x^{\prime}=x-8 y \\
& y^{\prime}=8 x+y \\
& \bar{x}^{\prime}=\left(\begin{array}{cc}
1 & -8 \\
8 & 1
\end{array}\right) \bar{x} \\
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& x^{2}-2 \lambda+65=0 \\
& \lambda=1 \pm i 8
\end{aligned}
$$

$$
\begin{aligned}
& A(-x)=-A x) \\
& \bar{x}=\binom{1}{0} \Rightarrow \bar{x}^{\prime}=\binom{1}{8} \\
& \bar{x}=\binom{0}{1} \Rightarrow \bar{x}^{\prime}=\binom{-8}{1}
\end{aligned}
$$

Counterclockwise rotation!

Repeated eigenvalues

- What happens when you get two identical eigenvalues?
- Two cases:

1. The single eigenvalue has two distinct eigenvectors.
2. There is only one eigenvector (matrix is defective).

$$
\text { 1. } \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \overline{\mathbf{x}} \quad \text { 2. } \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \overline{\mathbf{x}}
$$

Repeated eigenvalues

- What happens when you get two identical eigenvalues?
- Two cases:

1. The single eigenvalue has two distinct eigenvectors.
2. There is only one eigenvector (matrix is defective).
3. $\overline{\mathbf{x}}^{\prime}=\left(\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right) \overline{\mathbf{x}}$
4. $\overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right) \overline{\mathbf{x}}$

0
0

Repeated eigenvalues

$$
\text { 1. } \begin{aligned}
& \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \overline{\mathbf{x}} \\
& \operatorname{det}(A-\lambda I)=(\lambda-3)^{2}=0 \\
& \lambda=3 \\
&(A-\lambda I) \mathbf{v}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \mathbf{v}=0
\end{aligned}
$$

All vectors solve this so choose any two independent vectors:

$$
\begin{gathered}
\mathbf{v}_{\mathbf{1}}=\binom{1}{0}, \mathbf{v}_{\mathbf{2}}=\binom{0}{1} \\
\mathbf{x}(t)=C_{1} e^{3 t}\binom{1}{0}+C_{2} e^{3 t}\binom{0}{1}
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2. } \overline{\mathbf{x}}^{\prime}=\left(\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right) \overline{\mathbf{x}} \\
& \operatorname{det}(A-\lambda I)=\lambda^{2}-4 \lambda+4=0
\end{aligned}
$$

$$
\lambda=2
$$

$$
(A-\lambda I) \mathbf{v}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right) \mathbf{v}=0
$$

$$
\mathbf{v}=\binom{1}{-1} \quad \text { <-- only } 1 \text { evector! }
$$

$$
\mathbf{x}(t)=C_{1} e^{2 t} \mathbf{v}+C_{2} e^{2 t}(\mathbf{w}+t \mathbf{v})
$$

$$
(A-\lambda I) \mathbf{w}=\mathbf{v}
$$

$$
\mathbf{w}=\binom{-1}{0}
$$

<-- called
"generalized evector"

Systems of ODEs - steps for solving (2x2)

- Find evalues (λ) and evectors (\mathbf{v}) or generalized evectors (\mathbf{w}) of A :

Systems of ODEs - steps for solving (2x2)

- Find evalues (λ) and evectors (\mathbf{v}) or generalized evectors (\mathbf{w}) of A :
- Distinct real - $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}$
where λ and $\mathbf{v}_{\mathbf{i}}$ solve $(A-\lambda I) \mathbf{v}_{\mathbf{i}}=0$.

Systems of ODEs - steps for solving (2x2)

- Find evalues (λ) and evectors (\mathbf{v}) or generalized evectors (\mathbf{w}) of A :
- Distinct real - $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}$
where λ and $\mathbf{v}_{\mathbf{i}}$ solve $(A-\lambda I) \mathbf{v}_{\mathbf{i}}=0$.
- Complex - $\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))\right.$

$$
\left.+C_{2}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))\right]
$$

where $\lambda_{1}=\alpha+\beta i$ and $\mathbf{v}_{\mathbf{1}}=\mathbf{a}+\mathbf{b} i$.

Systems of ODEs - steps for solving (2x2)

- Find evalues (λ) and evectors (\mathbf{v}) or generalized evectors (\mathbf{w}) of A :
- Distinct real - $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}$
where λ and $\mathbf{v}_{\mathbf{i}}$ solve $(A-\lambda I) \mathbf{v}_{\mathbf{i}}=0$.
- Complex - $\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))\right.$

$$
\left.+C_{2}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))\right]
$$

where $\lambda_{1}=\alpha+\beta i$ and $\mathbf{v}_{\mathbf{1}}=\mathbf{a}+\mathbf{b} i$.

- Repeated with two eigenvectors (diagonal matrices only) -

$$
\mathbf{x}(t)=C_{1} e^{\lambda t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda t} \mathbf{v}_{\mathbf{2}}
$$

Systems of ODEs - steps for solving (2x2)

- Find evalues (λ) and evectors (\mathbf{v}) or generalized evectors (\mathbf{w}) of A :
- Distinct real - $\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}$
where λ and $\mathbf{v}_{\mathbf{i}}$ solve $(A-\lambda I) \mathbf{v}_{\mathbf{i}}=0$.
- Complex - $\mathbf{x}(\mathbf{t})=e^{\alpha t}\left[C_{1}(\mathbf{a} \cos (\beta t)-\mathbf{b} \sin (\beta t))\right.$

$$
\left.+C_{2}(\mathbf{a} \sin (\beta t)+\mathbf{b} \cos (\beta t))\right]
$$

where $\lambda_{1}=\alpha+\beta i$ and $\mathbf{v}_{\mathbf{1}}=\mathbf{a}+\mathbf{b} i$.

- Repeated with two eigenvectors (diagonal matrices only) -

$$
\mathbf{x}(t)=C_{1} e^{\lambda t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda t} \mathbf{v}_{\mathbf{2}}
$$

- Repeated with one eigenvector - $\mathbf{x}(t)=C_{1} e^{\lambda t} \mathbf{v}+C_{2} e^{\lambda t}(\mathbf{w}+t \mathbf{v})$ where λ and \mathbf{v} solve $(A-\lambda I) \mathbf{v}=\mathbf{0}$ and \mathbf{w} solves $(A-\lambda I) \mathbf{w}=\mathbf{v}$.

Steady state - two notions

- Forced mass-spring systems - long term behaviour after transient dies down.
- If the IC isn't right on $y_{p}(t)$, the homog solution decays exponentially (for $\alpha<0$) so eventually only y_{p} remains.

$$
y(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)+y_{p}(t)
$$

- SS can be oscillation (not constant).

Steady state - two notions

- Forced mass-spring systems - long term behaviour after transient dies down.
- If the IC isn't right on $y_{p}(t)$, the homog solution decays exponentially (for $\mathrm{a}<0$) so eventually only y_{p} remains.

$$
y(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)+y_{p}(t)
$$

- SS can be oscillation (not constant).
- Constant solutions of a system of ODEs (discussed in the next slides).
- Transient may decay or grow exponentially.
- Always constant solutions!

Summary - homogeneous 2×2 systems

Steady states - constant solutions ($\operatorname{set} x^{\prime}=0$ and solve $A x=0$).

Summary - homogeneous 2×2 systems

Steady states - constant solutions (set $x^{\prime}=0$ and solve $A x=0$).

- For the system of equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we always have $\mathbf{x}(t)=\mathbf{0}$ as a steady state solution.

Summary - homogeneous 2×2 systems

Steady states - constant solutions (set $x^{\prime}=0$ and solve $A x=0$).

- For the system of equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we always have $\mathbf{x}(t)=\mathbf{0}$ as a steady state solution.
- If A is a singular matrix with $A \mathbf{v}=\mathbf{0}$ then $\mathbf{x}(t)=\mathbf{v}$ is also a steady state solution.

Summary - homogeneous 2×2 systems

Steady states - constant solutions (set $x^{\prime}=0$ and solve $A x=0$).

- For the system of equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we always have $\mathbf{x}(t)=\mathbf{0}$ as a steady state solution.
- If A is a singular matrix with $A \mathbf{v}=\mathbf{0}$ then $\mathbf{x}(t)=\mathbf{v}$ is also a steady state solution.
- In fact, $\mathbf{x}(t)=c \mathbf{v}$ is a steady state for all c.

Summary - homogeneous 2×2 systems

Steady states - constant solutions (set $x^{\prime}=0$ and solve $A x=0$).

- For the system of equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we always have $\mathbf{x}(t)=\mathbf{0}$ as a steady state solution.
- If A is a singular matrix with $A \mathbf{v}=\mathbf{0}$ then $\mathbf{x}(t)=\mathbf{v}$ is also a steady state solution.
- In fact, $\mathbf{x}(t)=c \mathbf{v}$ is a steady state for all c.
- It is also an eigenvector associated with eigenvalue $\lambda=0$.

Summary - homogeneous 2×2 systems

Steady states - constant solutions (set $x^{\prime}=0$ and solve $A x=0$).

- For the system of equations $\mathbf{x}^{\prime}=A \mathbf{x}$, we always have $\mathbf{x}(t)=\mathbf{0}$ as a steady state solution.
- If A is a singular matrix with $A \mathbf{v}=\mathbf{0}$ then $\mathbf{x}(t)=\mathbf{v}$ is also a steady state solution.
- In fact, $\mathbf{x}(t)=c \mathbf{v}$ is a steady state for all c.
- It is also an eigenvector associated with eigenvalue $\lambda=0$.
- If A is nonsingular then $\mathbf{x}(t)=\mathbf{0}$ is the only steady state.

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:
stable node
- real negative evalues

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:
stable node
- real negative evalues

unstable node
- real positive evalues

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:
stable node
- real negative evalues

unstable node
- real positive evalues

saddle
- opposite sign evalues

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:
stable node
- real negative evalues

unstable node
- real positive evalues

saddle
- opposite sign evalues

stable spiral
- complex evalues, negative real part

Summary - homogeneous 2×2 systems

Steady states

- Steady states are classified by the nature of the surrounding solutions:
stable node
- real negative evalues

unstable node
- real positive evalues

saddle
- opposite sign evalues

stable spiral
- complex evalues, negative real part

unstable spiral
- complex evalues, positive real part

Summary - homogeneous 2×2 systems

- Quick way to determine how all other solutions behave:

Summary - homogeneous 2×2 systems

- Quick way to determine how all other solutions behave:

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Summary - homogeneous 2×2 systems

- Quick way to determine how all other solutions behave:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& \operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right)
\end{aligned}
$$

Summary - homogeneous 2×2 systems

- Quick way to determine how all other solutions behave:

$$
\left.\begin{array}{rl}
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & \\
\begin{array}{rl}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+a d-b c \\
& =\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) \quad=0
\end{array} \\
& =0
\end{array}\right)
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?
$\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0$
(A) $\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

$\vec{\sim}(\mathrm{A}) \quad\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\begin{equation*}
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \tag{0}
\end{equation*}
$$

$$
\lambda=\frac{\operatorname{tr} A}{2} \pm \frac{\sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

$\omega(\mathrm{A})\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

$$
\begin{aligned}
& \text { (A) }\left\{\begin{array}{l}
\operatorname{tr} A<0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A>0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right.
\end{aligned}
$$

(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

$$
\begin{aligned}
& \approx(\mathrm{A})\left\{\begin{array}{l}
\operatorname{tr} A<0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array} \quad \lambda=\frac{\operatorname{tr} A}{2} \pm \frac{\sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}\right. \\
& \text { (B) } \quad\left\{\begin{array}{l}
\operatorname{tr} A>0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right. \\
& \text { ensures complex evalue }
\end{aligned}
$$

(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\begin{equation*}
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \tag{1}
\end{equation*}
$$

$$
\psi(\mathrm{A})\left\{\begin{array}{l}
\operatorname{tr} A<0 \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array} \quad \lambda=\frac{\operatorname{tr} A}{2} \pm \frac{\sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}\right.
$$

$$
\text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A>0 \text { ensures complex evalue } \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right.
$$

(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When do the solutions spiral IN to the origin?

$$
\begin{equation*}
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \tag{D}
\end{equation*}
$$

ensures negative real part
*(A) $\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A \quad \lambda=\frac{\operatorname{tr} A}{2} \pm \frac{\sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$

$$
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
$$

(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A>0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When is the origin a stable node?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

(A) $\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)<0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

-When is the origin a stable node?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

(A) $\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A>0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
$\omega(\mathrm{C})\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)<0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When is the origin a stable node?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

(A) $\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$

«(C) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)<0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When is the origin a stable node?

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

(A) $\left\{\begin{array}{l}\operatorname{tr} A<0 \\ (\operatorname{tr} A)^{2}<4 \operatorname{det} A\end{array}\right.$
(B) $\left\{\begin{array}{l}\operatorname{tr} A \text { not complex! }^{\tan } \mathrm{ta}^{2}<4 \operatorname{det} A\end{array}\right.$
$\boldsymbol{\sim}(\mathrm{C})\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)>0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(D) $\left\{\begin{array}{l}\operatorname{tr} A<0, \operatorname{det}(A)<0 \\ (\operatorname{tr} A)^{2}>4 \operatorname{det} A\end{array}\right.$
(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

- When is the origin a stable node?

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \text { (A) }\left\{\begin{array}{l}
\frac{\operatorname{tr} A<0}{(\operatorname{tr} A)^{2}<4 \operatorname{det} A}
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A>0 \text { notemplex! } \\
\frac{(\operatorname{tr} A)^{2}<4 \operatorname{det} A}{}
\end{array}\right. \\
& \text { (C) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)>0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right. \\
& \text { (D) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)<0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right.
\end{aligned}
$$

(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

-When is the origin a stable node?

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \text { (A) }\left\{\begin{array}{l}
\operatorname{tr} A<0 \\
\frac{\operatorname{tr} A)^{2}}{}+4 \operatorname{det} A
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A \sum^{\text {not }} 0 \\
\frac{\operatorname{tr} A)^{2}}{}+4 \operatorname{det} A
\end{array}\right. \\
& \text { (C) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)>0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right. \\
& \text { (D) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)<0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right.
\end{aligned}
$$

(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

-When is the origin a stable node?

Summary - homogeneous 2×2 systems

- When is the origin a stable node?

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \text { (A) }\left\{\begin{array}{l}
\frac{\operatorname{tr} A<0}{(\operatorname{tr} A)^{2}<4 \operatorname{det} A}
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A>0^{\text {not }} 0 \mathrm{mplex}! \\
(\operatorname{tr} A)^{2}<4 \operatorname{det} A
\end{array}\right. \\
& \boldsymbol{\omega}(\mathrm{C}) \quad\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)>0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right. \\
& \text { (D) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)<0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right.
\end{aligned}
$$

(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

-When is the origin a stable node?

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \text { (A) }\left\{\begin{array}{l}
\operatorname{tr} A<0 \\
\left.\frac{\operatorname{tr} A}{}\right)^{2}<4 \operatorname{det} A
\end{array}\right. \\
& \text { (B) }\left\{\begin{array}{l}
\operatorname{tr} A)^{\text {not } 0 \text { omplex! }} \\
\frac{(\operatorname{tr} A)^{2}}{}+4 \operatorname{det} A
\end{array}\right. \\
& \text { (C) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)>0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right. \\
& \text { (D) }\left\{\begin{array}{l}
\operatorname{tr} A<0, \operatorname{det}(A)<0 \\
(\operatorname{tr} A)^{2}>4 \operatorname{det} A
\end{array}\right.
\end{aligned}
$$

(E) Explain, please.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right)
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \quad \operatorname{tr}(A)=
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \quad \operatorname{tr}(A)=-3
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \operatorname{tr}(A)=-3 \quad \text { so some solutions decay. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{aligned}
& \operatorname{tr}(A)=-3 \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \text { so some solutions decay. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{gathered}
\operatorname{tr}(A)=-3 \\
\operatorname{det}(A)=2>0
\end{gathered} \quad \text { so some solutions decay. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{aligned}
& \operatorname{tr}(A)=-3 \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \text { so soll solutions decay. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{aligned}
& \operatorname{tr}(A)=-3 \\
& \\
& \\
& \\
& \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \begin{gathered}
\text { so soll } A)^{2}-4 \operatorname{det}(A)=
\end{gathered}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{aligned}
& \operatorname{tr}(A)=-3 \\
& \operatorname{det}(A)=2>0 \\
& \\
& \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0
\end{aligned}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{ll}
\operatorname{tr}(A)=-3 & \text { so som solutions decay. } \\
& \operatorname{det}(A)=2>0
\end{array} \quad \text { so not a saddle. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{lc}
\operatorname{tr}(A)=-3 & \text { so } \begin{array}{c}
\text { all } \\
\operatorname{det}(A)=2>0
\end{array} \\
\text { so not a saddle. }
\end{array} \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { so not complex e-values. } \\
& \text { Therefore, two negative e-values => stable node. }
\end{aligned}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) & \operatorname{tr}(A)=-3 \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \text { so sole solutions decay. }
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right)
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{ll}
\operatorname{tr}(A)=-3 & \text { so some solutions decay. } \\
& \operatorname{det}(A)=2>0
\end{array} \text { so not a saddle. }
$$

Therefore, two negative e-values => stable node.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \operatorname{tr}(A)=
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) & \begin{array}{l}
\operatorname{tr}(A)=-3
\end{array} \\
& \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \text { so soll solutions decay. }
$$

Therefore, two negative e-values => stable node.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \operatorname{tr}(A)=4
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{lc}
\operatorname{tr}(A)=-3 & \text { so } \begin{array}{c}
\text { all } \\
\operatorname{det}(A)=2>0
\end{array} \\
\text { so not a saddle. }
\end{array} \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { so not complex e-values. } \\
& \text { Therefore, two negative e-values => stable node. }
\end{aligned}
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \operatorname{tr}(A)=4 \quad \text { so some solutions grow. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{l}
\operatorname{tr}(A)=-3 \\
\operatorname{det}(A)=2>0
\end{array} \quad \text { so soll solutions decay. } \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { so not complex e-values. } \\
& \text { Therefore, two negative e-values => stable node. }
\end{aligned}
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{aligned}
& \operatorname{tr}(A)=4 \\
& \operatorname{det}(A)=
\end{aligned} \quad \text { so some solutions grow. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) & \begin{array}{l}
\operatorname{tr}(A)=-3
\end{array} \\
& \operatorname{det}(A)=2>0
\end{aligned} \text { so solle solutions decay. }
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{aligned}
& \operatorname{tr}(A)=4 \\
& \operatorname{det}(A)=3>0
\end{aligned} \quad \text { so some solutions grow. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) & \operatorname{tr}(A)=-3 \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \text { so sole solutions decay. }
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{lc}
\operatorname{tr}(A)=4 & \text { so some solutions grow. } \\
\operatorname{det}(A)=3>0
\end{array} \quad \text { so not a saddle. }
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) & \begin{array}{l}
\operatorname{tr}(A)=-3
\end{array} \\
& \operatorname{det}(A)=2>0
\end{aligned} \begin{gathered}
\text { so soll } \\
\\
\\
(\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { solutions decay. } \\
\text { so not complex e-values. }
\end{gathered}
$$

Therefore, two negative e-values => stable node.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{lr}
\operatorname{tr}(A)=4 & \text { so sons solutions grow. } \\
\operatorname{det}(A)=3>0 & \text { so not a saddle. }
\end{array}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) & \begin{array}{l}
\operatorname{tr}(A)=-3
\end{array} \\
& \\
& \operatorname{det}(A)=2>0
\end{aligned} \begin{gathered}
\text { all } \\
\\
\\
(\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { solutions decay. } \\
\text { so not complex e-values. }
\end{gathered}
$$

Therefore, two negative e-values => stable node.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{ll}
\operatorname{tr}(A)=4 & \text { so sont solutions grow. } \\
& \operatorname{det}(A)=3>0 \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=
\end{array}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{lc}
\operatorname{tr}(A)=-3 & \text { so some solutions decay. } \\
\operatorname{det}(A)=2>0 & \text { so not a saddle. }
\end{array} \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { so not complex e-values. } \\
& \text { Therefore, two negative e-values => stable node. } \\
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{lc}
\operatorname{tr}(A)=4 & \text { so soll solutions grow. } \\
\operatorname{det}(A)=3>0 & \text { so not a saddle. }
\end{array} \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=4>0
\end{aligned}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{l}
\operatorname{tr}(A)=-3 \\
\operatorname{det}(A)=2>0
\end{array} \\
& \text { all } \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { so not complex e-values. } \\
& \text { Therefore, two negative e-values => stable node. } \\
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{lc}
\operatorname{tr}(A)=4 & \text { so solle solutions grow. } \\
\operatorname{det}(A)=3>0 & \text { so not a saddle. }
\end{array} \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=4>0 \text { so not complex e-values. }
\end{aligned}
$$

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{aligned}
& \operatorname{tr}(A)=-3 \\
& \operatorname{det}(A)=2>0
\end{aligned} \quad \text { so solle solutions decay. }
$$

Therefore, two negative e-values => stable node.

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{ll}
\operatorname{tr}(A)=4 & \text { so solle solutions grow. } \\
& \operatorname{det}(A)=3>0 \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=4>0 \text { so not complex e-values. }
\end{array} . \begin{array}{l}
\text { so not a saddle. }
\end{array} \\
&
\end{aligned}
$$

Therefore, two positive e-values => unstable node.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Using the trace/determinant plane to classify systems

- Classify the steady state of the equation $x^{\prime}=A x$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
1 & 1 \\
-6 & -4
\end{array}\right) \begin{array}{l}
\operatorname{tr}(A)=-3 \\
\operatorname{det}(A)=2>0
\end{array} \\
& \text { so somes all } \frac{\text { sol }}{\text { andions decay. }} \\
& \text { so not a saddle. } \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=1>0 \text { so not complex e-values. } \\
& \text { Therefore, two negative e-values => stable node. } \\
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right) \quad \begin{array}{lc}
\operatorname{tr}(A)=4 & \text { so solle solutions grow. } \\
\operatorname{det}(A)=3>0 & \text { so not a saddle. }
\end{array} \\
& (\operatorname{tr} A)^{2}-4 \operatorname{det}(A)=4>0 \text { so not complex e-values. }
\end{aligned}
$$

Therefore, two positive e-values => unstable node.
When given numbers, just find e-values but with parameters, need a way to derive conditions.

$$
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
$$

Summary - homogeneous 2×2 systems

Summary - homogeneous 2×2 systems

(A) stable node
(B) unstable node

(C) stable spiral

(D) unstable spiral

(E) saddle

Summary - homogeneous 2×2 systems

Summary - homogeneous 2×2 systems

Summary - homogeneous 2×2 systems

Repeated evalue cases:

* $\lambda<0$, two indep. evectors.
$\lambda<0$, only one evector.

$\lambda>0$, two indep. evectors.
$\lambda>0$, only one evector.

One zero evalue (singular matrix):

$$
\lambda_{1}=0, \lambda_{2}<0,
$$

$\lambda_{1}=0, \lambda_{2}>0$,

