
Today

• Summary of steps for solving the Diffusion Equation with homogeneous 
Dirichlet or Neumann BCs using Fourier Series.

• Nonhomogeneous BCs

• Mixed Dirichlet/Neumann BCs

• Method of Undetermined Coefficients and Fourier Series



Using Fourier Series to solve the Diffusion Equation

• Steps to solving the PDE:

• Determine the eigenfunctions for the problem (look at BCs).

• Represent the IC u(x,0)=f(x) by a sum of eigenfunctions (Fourier 
series).

• Write down the solution by inserting eλt into each term of the FS.

u(x, 0) = f(x)

PDE determines all possible eigenfunctions.

BCs select a subset of the eigenfunctions.

IC is satisfied by adding up eigenfunctions.

ut = Duxx

du
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Using Fourier Series with Method of Undet. Coeff.

• Find the solution to the following problem:

where the bn are given values.

y��
p (t) + 16yp(t) = −n2π2Bn sin(nπt) + 16Bn sin(nπt) = bn sin(nπt)

Bn =
bn

16− n2π2
What if the 16 
had been 4π2?

y�� + 16y =
8�

n=1

bn sin(nπt)

When the RHS is a sum, we can work with one term at a time so let’s 
just focus on one of them, but not specify which:

y�� + 16y = bn sin(nπt)

Because there is no y’ term, we can include only the sine function in 
our guess:

yp(t) = Bn sin(nπt)

yp(t) =
8�

n=1

Bn sin(nπt)


