Today

* |[ntroduction to systems of equations

e Direction fields

e Figenvalues and eigenvectors

e Finding the general solution (distinct e-value case)

e Pre-midterm office hours poll - Friday (best time other than 2-3),
Monday (holiday so buildings locked)

Thursday, February 5, 2015



Introduction to systems of equations

Thursday, February 5, 2015



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

Thursday, February 5, 2015



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

Thursday, February 5, 2015



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

Thursday, February 5, 2015



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:
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Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mx” +vx' +kxr =0 - mv +yv+kx =0

/
L ==

/! /
L — U

Thursday, February 5, 2015



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mx” +vx' +kxr =0 - mv +yv+kx =0

/ Y k
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Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:
¢ position of object in one dimensional space in terms of X, v.

e position of an object in a plane (x, y coordinates) or three
dimensional space (X, y, z coordinates).
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Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:
¢ position of object in one dimensional space in terms of X, v.

e position of an object in a plane (x, y coordinates) or three
dimensional space (X, y, z coordinates).

¢ positions of multiple objects (two or more masses linked by
springs ).

e concentration in connected chambers (saltwater in multiple tanks,
intracellular and extracellular, blood stream and organs).

e populations of two species (e.g. predator and prey).
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Introduction to systems of equations

e As with single equations, we have linear and nonlinear systems:

e \

pr t“x — y + cos(2t) T r—y
dy _ . 3 dy .
E—x—l—llsm(t)y—l—t dt—\/E Y

e And we also have nonhomogeneous and homogeneous systems.

/ \

d d
d—f = t°x — y + cos(2t) - Y

dt
dy , 3 dy

= x + 4sin(t)y
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e As with single equations, we have linear and nonlinear systems:

e \

pr t“x — y + cos(2t) T r—y
dy _ . 3 dy .
E—ZB—I—KISID(t)y—I—t dt—\/E Y

e And we also have nonhomogeneous and homogeneous systems.
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Introduction to systems of equations

e Any linear system can be written in matrix form:

dx
dt
dy
dt

=tz — y + cos(2t)

=z + 4sin(t)y + ¢°
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Introduction to systems of equations

e Any linear system can be written in matrix form:

dx
dt
dy
dt
t2

@
dt

(

X
Y

)=

1

t*x — y + cos(2t)

T + 4sin(t)y + t°

—1
4 sin(t)

)(

X
Y

)+

cos(2t)
t3

)

Thursday, February 5, 2015



Introduction to systems of equations

e Any linear system can be written in matrix form:

d
d—f =tz — y + cos(2t)
d
d—i =z + 4sin(t)y + t°

L0 1ita) (-

e \We’ll focus on the case in which the matrix has constant entries. And
homogeneous, to start. For example,

i) =) (0)
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e Geometric interpretation - direction fields.

i) =) (0)
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e Geometric interpretation - direction fields.

w()=(1)G) = xem
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i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o AX gives the velocity vector of the object located at X.
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e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o AX gives the velocity vector of the object located at X.
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e Geometric interpretation - direction fields.
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e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o AX gives the velocity vector of the object located at X.
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o AX gives the velocity vector of the object located at X.
- 1 )
x = p
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o AX gives the velocity vector of the object located at X.
(1) |
X =
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o« AX gives the velocity vector of the object located at X.

1 I TTLLEFY
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o« AX gives the velocity vector of the object located at X.

| :i::: ff//l
X:(1> ;li**f”f;‘
FERRANGNEE

() 0)-6) T
4 1) \1 5:55:'1':*7“

| 1 . Er

* Solutions must follow the arrows. /I/Ifi::» ¢ b
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

o« AX gives the velocity vector of the object located at X.

l l T T T T Py
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X = (1) | / : — f s ] f j
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

« AX gives the velocity vector of the object located at X.
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

e AX gives the velocity vector of the object located at X.
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Introduction to systems of equations

e Geometric interpretation - direction fields.

i ()=(1)() = xe

e Think of the unknown functions as coordinates (x (%), y(t)) of an
object in the plane.

« AX gives the velocity vector of the object located at X.
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Introduction to systems of equations

e \Which of the following equations matches the given direction field?

O TR T T R SR -
T ET V) R EEp e
! -4 4§ % PR PRPEDP T
/ 1 _1 :,U j J J d ¢ & ¥ ¥ A N e A A
(B) X p— / ! { / 4 4 v « « " e o b > e W W N
]. ]. y / - B R el s e MO LI S
/ - N . G | r——a //'::
- R R B AL G A e SIS TR " A AR
/ 1 1 (/,E O B e s A N | D e W R S ) A
(C) X — e a—a—d—t— b A4 9 p Py
_1 1 y A VO SR RN G f f f
e o - T e B oS N e f ’ f
-l 4 4= — = - w % K R NN A O ’ f , ,
Jdaulabsl ol 8 ¥ ¥ %

E) Explain. please. http://kevinmehall.net/p/equationexplorer/
( ) P P vectorfield.html#(x+y)i+(X-y)| % 7C%5B-10,10,-10,10%5D
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e \Which of the following equations matches the given direction field?
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e \Which of the following equations matches the given direction field?
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Introduction to systems of equations

\

¢ You should see two
“special” directions.

e \What are they?

¢ Directions along which
the velocity vector is
parallel to the position
vector.

e That is,
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Introduction to systems of equations

¢ You should see two \
“special” directions.

e \What are they?

¢ Directions along which
the velocity vector is
parallel to the position
vector.

e Thatis, Av = A\v.
Ay = V2
(0

V2
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Matrix review (eigen-calculations)

L , 1 1
e Find eigenvalues and eigenvectors of A = 4 1)
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Matrix review (eigen-calculations)

4 1

L _ 1 1
e Find eigenvalues and eigenvectors of A = :
e Looking for values A and vectors v for which Av = \v.

e \What are the eigenvalues of A?

(A) 1 and -3
(B) -1 and 3
(C) 1and 3

(D) -1 and -3

(E) Explain, please.
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e Looking for values A and vectors v for which Av = \v.

/ Av — v =0
(A—X)v=0

L _ 1 1
e Find eigenvalues and eigenvectors of A = :
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e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.
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e Find eigenvalues and eigenvectors of A = :
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det(A—XI) =0
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

e Looking for values A and vectors v for which ;le 1: AV.
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det(A—XI) =0

1 — A\ 1
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Matrix review (eigen-calculations)

4 1

e Looking for values A and vectors v for which Av = \v.
Av — v =0
/ (A—X)v=0
det(A—XI) =0

1—Xx 1
det( A 1_)\>—O
(1-X)?—=4=0
(A2 =22 =3 =0)
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e Find eigenvalues and eigenvectors of A = :
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

e Looking for values A and vectors v for which ;le 1: AV.
Av — v =0
/ (A—X)v=0
det(A—XI) =0
det(1 4)\ 1i)\> = (
(1-X\)2—4=0
(A =2\ — 3 =0)

A=14+2=-1,3
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Matrix review (eigen-calculations)

e Find eigenvalues and eigenvectors of A — (

I 1
4 1

)

e Looking for values A and vectors v for which Av = \v.

Av — \2Wwv =0 e \What are the eigenvectors
i (A B )\])V _ 0 associated withl}\1=-1?

det(A —AI) =0 A V1= (—2)

1 — A 1 1
det( A 1_)\>—O (B)Vlzc(_2>
1—XN)“—4=0 2
(1 ” ©) vi = <1>
()\ —2A-3= O) (E) Explain, please.
A=1+2=-1,3 (2)

D) vi =c
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Matrix review (eigen-calculations)

4 1

L _ 1 1
e Find eigenvalues and eigenvectors of A = :
e Looking for values A and vectors v for which Av = \v.

Av — v =0 e What are the eigenvectors
i (A B )\])V _ 0 associated withl}\1=-1?
det(A —AI) =0 A V1= (—2)
1 — A 1 1
det( A 1_)\>_O i}(B)Vl—c(_2>
(1—-X)?—4= (2)
C) vi1 =
(A2 —2)\ — 3 =0) RN

(E) Explain, please.

Thursday, February 5, 2015



Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

e Looking for values A and vectors v for which ;le 1: AV.
Av — v =0
(A—X)v=0
det(A—XI) =0
det(1 4)\ 1i)\> = (
(1-X\)2—4=0
(A =2\ — 3 =0)

A=14+2=-1,3

Thursday, February 5, 2015



Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

e Looking for values A and vectors v for which ;le 1: AV.
Av — v =0 J A= —
(A—X)v=0
det(A—XI) =0
det(1 4)\ 1i)\> = (

(1-X\)2—4=0
(A =2\ — 3 =0)

A=14+2=-1,3

Thursday, February 5, 2015



Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.

Av —Av =0 J A=—
(A=ADv=0 (A+ vy = (Z i)"
det(A—XI) =0

1 — A 1
det ( A - )\> =0
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(A =2\ — 3 =0)

A=14+2=-1,3
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.
Av —Av =0 J A=—
(A=ADv=0 (A+ vy = (Z i)"
det(A—XI) =0
2 1 2 1

0 120 (62)~(6 o)
det(4 1_)\>—O 4 2 0 O
(1 — )\) —4 =0
(A =2\ — 3 =0)

A=14+2=-1,3
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.
Av — v =0 J A= —
(A—A)v =0 (At I)vy = (Z ;)Vlzo
det(A—XI) =0
2 1 2 1
)= (G200
det<4 1_)\>—O 4 2 0 O
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

e Looking for values A and vectors v for which ;le 1: AV.
Av —Av =20 J A= —
(A= Al)v=0 (A+I)v1:(i Dvl:o
det(A—XI) =0 . -
det(lz)\ 1iA>:o (4 2)”(0 0>
(1— )\) 4= 201 + v = 0
(

A — 2\ —3=0) oo (1
A=1+2=-1,3 1=\ =2
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.
Av —Av =20 J A= —
(A—A)v =0 (A+I)V1:<Z ;)Vlzo
det(A—XI) =0
2 1 2 1
)= (G200
det<4 1_)\>—O 4 2 0 O
(1-2)2—-4=0 201 +vz2 =0
(A2 =22 =3 =0) 1
V1 —
A=1+2=-1,3 —2

(and any scalar multiple of it)
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.
Av — v =0 A= —1
(A~ v =0 Vl:(
det(A—XI) =0
- 1 A2 =3
det( A 1_)\):() V2=<
(1 — )\) —4 =0
(A =2\ — 3 =0)

A=14+2=-1,3
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Matrix review (eigen-calculations)

L _ 1 1
e Find eigenvalues and eigenvectors of A = :

4 1
e Looking for values A and vectors v for which Av = \v.
Av — v =0 A= —1
(A~ \)v =0 vy — (_12>
det(A — M) =0
1—x 1 Ay = |
det< 4 14)20 V2:<2>
(1—-M\)2—4=0
()\2 2\ —3 = ()) e How do we use eigenvalues and
N=14+9—_-1.3 eigenvectors to construct a general

solution?
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.
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e Find the general solution to the system of equations
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

r] = T1 + T2 | , (1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

r] = T1 + T2 | , (1 1
, or equivalently X = 4 X
To = 4x1 + T2 1

e Convert this into a second order equation in only one unknown (x1):
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = X
To = 411 + X9 4 1

e Convert this into a second order equation in only one unknown (x1):

J
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
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e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

r] = T1 + T2 | , (1 1
, or equivalently X = 4 X
To = 4x1 + T2 1

e Convert this into a second order equation in only one unknown (x1):

/! / / /
/g x] =zx]+xy =27 +411 + 20
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L9

Thursday, February 5, 2015



Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

r] = T1 + T2 | , (1 1
, or equivalently X = 4 X
To = 4x1 + T2 1

e Convert this into a second order equation in only one unknown (x1):

/! / / /
/g x] =zx]+xy =27 +411 + 20

/
561—261

L9

/! / /
r; =x1 +4x1 + 27 — 21
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

r] = T1 + T2 | , (1 1
, or equivalently X = 4 X
To = 4x1 + T2 1

e Convert this into a second order equation in only one unknown (x1):

/! / / /
/g x] =zx]+xy =27 +411 + 20

/
561—261

L2
/! / /
r; =x1 +4x1 + 27 — 21

/! /
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):

// /
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e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):

) — 22 — 311 =0 —r*—2r—3=0
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e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
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e Find the general solution to the system of equations
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, or equivalently X = 4 X
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):
) — 22 — 311 =0 —r*—2r—3=0

r=-—1.3

L1 — Cl€_t Cgfigt
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):
) — 22 — 311 =0 —r*—2r—3=0

r=-—1.3

L1 — Cl€_t Cgfigt

J To=1x]— 11 = —Cie t+3C5e% — Ciet — Che’
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Solving a system of O

D

=S

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

26/1 = T1 + T9 _ / 1 1
or equivalently X = X

/
To = 4x1 + T2

4 1

e Convert this into a second order equation in only one unknown (x1):

) — 22 — 311 =0 —r*—2r—3=0

026315

|
3

—_

qv
L

L1

J X2

|
&
—_
|
S
p—t

r=-—1.3

— —C’le_t + 30263t — C’le_t — 0263t
—2C et + 205¢7!
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):
) — 22 — 311 =0 —r*—2r—3=0

r=-—1.3

L1 — Cl€_t Cgfigt

o = —2C1e" " + 2C5e”?
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

26/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):
) — 22 — 311 =0 —r*—2r—3=0

r=-—1.3

L1 — Cl€_t Cgfigt
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations

r] = T1 + T2 | , (1 1
, or equivalently X = 4 X
To = 4x1 + T2 1

e Convert this into a second order equation in only one unknown (x1):
) — 22 — 311 =0 —r*—2r—3=0
r=-—1.3 * Recall:
1 = Cre bt 4 Chet AL = —1 1
Ty = —2C e " + 205" V1= (—2)

_ (L1 _ e f 1 3¢ (1 Ay =3
() (e ) g
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
:1’;’1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):
) — 22 — 311 =0 —r*—2r—3=0

r=-—1.3 e Recall:

L1 — C’le_t 02€3t

To = —2C1e" " + 2C5¢e7

X — (331) — Cl t@ —+ Czegt <1>
L9 2
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Solving a system of ODEs

e The following is a shortcut approach for 2x2 systems, mostly for insight.

e Find the general solution to the system of equations
33/1 = 1 + X2 _ / 1 1
, or equivalently X = 4 X
To = 4x1 + T2 1
e Convert this into a second order equation in only one unknown (x1):
v/ — 22, —3x1 =0 —r*—2r—3=0

r=-—1.3 e Recall:

L1 — C’le_t 02€3t

To = —2C1e" " + 2C5¢e7

X = (2) = C1+ 02
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Solving a system of ODEs

® You can use the second order trick for 2x2 but in general,
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Solving a system of ODEs

® You can use the second order trick for 2x2 but in general,
¢ Find eigenvalues and eigenvectors of A,

e Assemble general solution by summing up terms of the form

C’neA”tVn
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Solving a system of ODEs

® You can use the second order trick for 2x2 but in general,
¢ Find eigenvalues and eigenvectors of A,
e Assemble general solution by summing up terms of the form

C’neA”tVn

e This works when eigenvalues are distinct or, if there are repeated
eigenvalues, when there are N independent eigenvectors.
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Solving a system of ODEs

® You can use the second order trick for 2x2 but in general,
¢ Find eigenvalues and eigenvectors of A,
e Assemble general solution by summing up terms of the form

C’neA”tVn

e This works when eigenvalues are distinct or, if there are repeated
eigenvalues, when there are N independent eigenvectors.

e Other cases (not enough e-vectors or complex e-values) Thursday.
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