Today

e Midterm - avg 72%, 11 fails, 12 in the 90%s, range 7%-100%.
e Chemical diffusion in a long narrow tube/rod.
e Eigenvalues and eigenvectors in a discrete version (matrix problem).
e Eigenvalues and eigenvectors in a continuous version (DE problem).
e Does the continuous version have a complete set of eigenvectors?

e Fourier sine and cosine series
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¢ Treat the tube as If it were many small tanks connected by pipes.
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e Two common ways to deal with the ends of the tube:

_, Fixed end-point concentration _

No-flux end-points
comes right beok. (QUDINONNONNONNCRNGND) cell bod
comes right back ( ) y

e Example: the axon of a neuron
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¢ \What happens when a drop of dye is added to the tube:

e Two-tank approximation, fixed end-point concentration:

co=0 de co=0
Vd_tl — kC() — k‘Cl — k’Cl —+ ]{762
dCl
E:K(_261+62) @_ (_2 1 )C
d dt 1 -2
-2 — K(Cl — 262)

dt
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dc -2 1
1
)\1 = —K V1 — <1>
1
)\2 = —3K Vo — (_1>

c(t) = Ae*tvy + Bet?'vy

= (4"7)

e Average of two tanks (A) decays slowly at rate A1=-1 while difference decays
quickly at rate Ao=-3.
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A = oo —64

0\

0.41

0.41
ol 0

-0.41
vi= | e -0.41
0
0.41
0.41
0 2 4 6 8 10 12 0 /

\ / \ /

e Add these up to satisfy initial conditions. Each component decays at a

different rate.
A1t

0.2

0.4

c(t) =cie’'vy + cae™ vy + c3e™tvg + cpe™Mivy + ety + cgeivg + cre vy + cgettvg
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¢ 128-tank approximation, fixed end-point concentration:

e First eigenvector (mode) is = half a period of a sine function.
e Second mode is = a full period of a sine function.

e Third mode is =three halves the period of a sine function, etc.

¢ | ow frequency modes decay slowly, high frequency modes decay quickly.
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¢ Eight-tank approximation, no-flux end-points:

to =y LD
“CO” i s - -3
C1 Co Ci-1  Cj Cj+
dc.
J
—= = K(¢j—1 — 2¢j + ¢j41)
dt
dCl

E:K(CO—Cl—Q-I-Cz)
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¢ Eight-tank approximation, no-flux end-points:

—> —>

KCO — KCl
(@ 0 M0 0 0 0 D

— —

C1 C2 Ci1 Cj Cj

de

- = K(ej-1—2¢j + ¢j41)

dCl

E — K(—Cl —I—C2>
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¢ Eight-tank approximation, no-flux end-points:

—> —>

Kcg = Ke =
T (@R 0TD)

C1 C2 Ci1 Cj Cj

de

- = K(ej-1—2¢j + ¢j41)

dei
dt
acs
dt
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¢ Eight-tank approximation, no-flux end-points:

@ )
—1 1 0 0 0 0 0 0
1 -2 1 0 0 0 0 0
0 1 -2 1 0 0 0 0
de .0 0 1 -2 1 0 0 0
dt 0 0 0 1 -2 1 0 0
0 0 0 0 1 -2 1 0
0 0 0 0 0 1 -2 1
0 0 0 0 0 0 1 -1
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¢ 128-tank approximation, no-flux end-point:

* First mode is the constant function.

e Second mode is = half a period of a cosine function.
e Third mode is = a full period of a cosine function.

¢ | ow frequency modes decay slowly, high frequency modes decay quickly.
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Diffusion in a long thin tube

* |n the limit of an infinite number of tiny tanks...

e Suppose there is a function c(x,t) such that cj(t) = c(jAx,1).

0 Ax 2Ax 3Ax 4Ax 5Ax 6Ax 7Ax 8AXx

¢ \Want to replace this equation by one for the function c(x,t)...
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ac;
dt

e Recall Taylor series:

fla+Ax) ~ f(2) + f(2)Az + o f" () Ad?
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ac;
dt

e Recall Taylor series:

fla+Ax) ~ f(2) + f(2)Az + o f" () Ad?

= K(cj—1 —2¢j +¢jt1)

() = el + A, 1 (x = jAx)
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ac;
dt
e Recall Taylor series:

fla+Ax) ~ f(2) + f(2)Az + o f" () Ad?

ci+1(t) = c(z + Ax,t) (x = jAx)

d 1 d? )
NM. dwc(x,t)Ax | deQC(x,t)Ax

d 1 d? )
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= K(¢j—1 — 2¢j + ¢j41)

2d:1326

~2¢;(t) = —2caf)




Diffusion in a long thin tube

ac;
dt

e Recall Taylor series:
1
f(z+ Ax) = f(x) + f'(2)Ax + 5 " (x) A”
ci+1(t) = c(z + Ax,t) (x = jAx)

1 d? ;
M M dez t)Ax
M L& t)Az?
-1 M 2d:132
—2¢(t) = M

= K(¢j—1 — 2¢j + ¢j41)
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ac;
dt

e Recall Taylor series:
fla+Ax) ~ f(2) + f(2)Az + o f" () Ad?
cj+1(t) = c(x + Az, t) (x = jAx)

1 d?
57 QC(CU,t)AQL’Q
T

d 1 d? )
cj—1(t) = M W > 72 c(x,t)Ax
~2¢;(t) = —2caf)

dc d?c
— KAp? -~
dt YA

= K(¢j—1 — 2¢j + ¢j41)

2
X
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dc;
— = K(cj_1 — 2¢; + ¢j41)
dt
e Recall Taylor series:
1
r+Ax) T — () Ax?
fz+ ) The Diffusion Equation 2f (@)
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e Eigenvalues and eigenvectors for a partial differential equation:

e For the matrix equation ¢/ = Ac, find all eigenvalues A and
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e Eigenvalues and eigenvectors for a partial differential equation:

e For the matrix equation ¢/ = Ac, find all eigenvalues A and

eigenvectors ¢: Ac = Ac.

e For the PDE

de d?c
dt  dx?
find all eigenvalues A and eigen“vectors” c(x)
pke_ )
- - C
If A dir®
>0 es If A<O,
or D
p— 6_

c(x) Ve
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e To find A, impose appropriate boundary conditions.

e |[f the physical system has
and find all functions with corresponding A that work.

, USE

* The exp functio

c(x) =s

P27T2D onditions so

A= 72

—X

)

for all integers P20 | /— )\ )

\ D

» Which of following satisfies ¢(0) = 0 and ¢(L) = 07?

A) with A = 2m D B) with A = 8m°D
o (5] T
S111 333
472 D 1672 D
£O With A = — . $D)with A = — —

L? L?
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where Ap are unknown constants to be determined by the IC, and
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2 dc
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