Today

- Midterm 1 postponed to Feb 10 (not updated on calendar yet).
- Solving a second order linear homogeneous equation with constant coefficients
- complex roots to the characteristic equation,
- repeated roots to the characteristic equation (Reduction of Order).
- Connections to matrix algebra.
- Solving a second order linear nonhomogeneous equation.

Complex number review

- Geometric interpretation of complex numbers
- e.g. $a+b i$
b

$$
\begin{aligned}
& a=M \cos \theta \\
& b=M \sin \theta
\end{aligned}
$$

$$
M=\sqrt{a^{2}+b^{2}}
$$

$$
\theta=\arctan \left(\frac{b}{a}\right)
$$

$$
a+b i=M(\cos \theta+i \sin \theta)
$$

θ is sometimes called the argument or phase of $a+b i$.

Complex number review

- Toward Euler's formula
- Taylor series - recall that a function can be represented as

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots
$$

- What function has Taylor series

$\omega(A) \cos x \quad \omega(C) e^{x}$
$\omega(B) \sin x \quad$ (D) $\ln x$

Complex number review

- Use Taylor series to rewrite $\cos \theta+i \sin \theta$.

$$
\begin{aligned}
\underline{\cos \theta}+i \underline{\sin \theta} & =\frac{1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)}{\left(-1=i^{2}\right.} \\
& =1+i \theta+(-1) \frac{\theta^{2}}{2!}+(-1) i \frac{\theta^{3}}{3!}+(-1)^{2} \frac{\theta^{4}}{4!}+\cdots \\
& =1+i \theta+i^{2} \frac{\theta^{2}}{2!}+i^{3} \frac{\theta^{3}}{3!}+i^{4} \frac{\theta^{4}}{4!}+\cdots \\
& =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\cdots=e^{i \theta}
\end{aligned}
$$

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots
$$

Complex number review

- Use Taylor series to rewrite $\cos \theta+i \sin \theta$. $\cos \theta+i \sin \theta$

Euler's formula:

Complex number review

- Geometric interpretation of complex numbers
- e.g. $a+b i$

$$
\begin{aligned}
& a=M \cos \theta \\
& b=M \sin \theta
\end{aligned}
$$

$$
M=\sqrt{a^{2}+b^{2}}
$$

$$
\theta=\arctan \left(\frac{b}{a}\right)
$$

$$
a+b i=M(\cos \theta+i \sin \theta)
$$

$$
a+b i=M e^{i \theta}
$$

(Polar form makes multiplication much cleaner)

Complex roots (Section 3.3)

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

-When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, we get complex roots:

$$
\begin{aligned}
r_{1,2} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{-1} \sqrt{4 a c-b^{2}}}{2 a} \\
& =\frac{-b \pm i \sqrt{4 a c-b^{2}}}{2 a}=\frac{-b}{2 a} \pm \frac{\sqrt{4 a c-b^{2}}}{2 a} i \\
& =\alpha \pm \beta i
\end{aligned}
$$

Complex roots (Section 3.3)

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t} \\
& =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
y_{2}(t) & =e^{(\alpha-\beta i) t} \\
& =e^{\alpha t} e^{-i \beta t} \\
& =e^{\alpha t}(\cos (-\beta t)+i \sin (-\beta t)) \\
& =e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

Complex roots (Section 3.3)

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
& y_{1}(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

- Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$
\begin{aligned}
\frac{1}{2} y_{1}(t)+\frac{1}{2} y_{2}(t) & =e^{\alpha t} \cos (\beta t) \\
\frac{1}{2 i} y_{1}(t)-\frac{1}{2 i} y_{2}(t) & =e^{\alpha t} \sin (\beta t)
\end{aligned}
$$

- General solution:

$$
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t)
$$

Complex roots (Section 3.3)

- To be sure this is a general solution, we must check the Wronskian:

$$
W\left(e^{\alpha t} \cos (\beta t), e^{\alpha t} \sin (\beta t)\right)(t)=
$$

(for you to fill in later - is it non-zero?)

Recall: $W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$

Complex roots (Section 3.3)

- Example: Find the (real valued) general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Step 1: Assume $y(t)=e^{r t}$, plug this into the equation and find values of r that make it work.
(A) $r_{1}=1+2 i, r_{2}=1-2 i$
(D) $r_{1}=2+4 i, r_{2}=2-4 i$
(B) $r_{1}=-1+2 i, r_{2}=-1-2 i$
(E) $r_{1}=-2+4 i, r_{2}=-2-4 i$
(C) $r_{1}=1-2 i, r_{2}=-1+2 i$

Complex roots (Section 3.3)

- Example: Find the (real valued) general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.

$$
\begin{aligned}
& \text { (A) } y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right) \\
& \text { (B) } y(t)=C_{1} e^{(-1+2 i) t}+C_{2} e^{(-1-2 i) t} \\
& \text { (C) } y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+C_{3} e^{-t} \\
& \text { (D) } y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)
\end{aligned}
$$

Complex roots (Section 3.3)

- Example: Find the solution to the IVP

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=0
$$

- General solution: $\quad y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)$

$$
\begin{aligned}
\text { (A) } y(t) & =e^{-t}(2 \cos (2 t)+\sin (2 t)) \\
\text { (B) } y(t) & =e^{-t}\left(\cos (2 t)-\frac{1}{2} \sin (2 t)\right) \\
\text { (C) } y(t) & =\frac{1}{2} e^{-t}(2 \cos (2 t)-\sin (2 t)) \\
y(D) y(t) & =\frac{1}{2} e^{-t}(2 \cos (2 t)+\sin (2 t))
\end{aligned}
$$

Repeated roots (Section 3.4)

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
i. Two distinct real roots: $b^{2}-4 a c>0 .\left(r_{1} \neq r_{2}\right)$
ii.A repeated real root: $\mathrm{b}^{2}-4 \mathrm{ac}=0$.
iii. Two complex roots: $\mathrm{b}^{2}-4 \mathrm{ac}<0$.
- For case ii ($r_{1}=r_{2}=r$), we need another independent solution!
- Reduction of order - a method for guessing another solution.

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.
- Guess that $y_{2}(t)=v(t) y_{1}(t)$ for some as yet unknown $v(t)$. If you can find $v(t)$ this way, great. If not, gotta try something else.
- Example - $y^{\prime \prime}+4 y^{\prime}+4 y=0$. Only one root to the characteristic equation, $\mathrm{r}=-2$, so we only get one solution that way: $y_{1}(t)=e^{-2 t}$.
- Use Reduction of order to find a second solution.

$$
y_{2}(t)=v(t) e^{-2 t}
$$

- Heuristic explanation for exponential solutions and Reduction of order.

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\underline{y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}} \\
0=y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=v^{\prime \prime} e^{-2 t} \\
v^{\prime \prime}=0 \Rightarrow v^{\prime}=C_{1} \Rightarrow v(t)=C_{1} t+C_{2}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad\left(\right.$ where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{gathered}
=\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t)=C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{gathered}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=e^{-4 t} \neq 0$ So yes!

Summary (3.1-3.4)

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
i. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

ii.A repeated real root: $\mathrm{b}^{2}-4 \mathrm{ac}=0 .(r)$

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

iii. Two complex roots: $b^{2}-4 a c<0 .\left(r_{1,2}=\alpha \pm i \beta\right)$

$$
y=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)
$$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

(A) $y(t)=C_{1} e^{-2 t}+C_{2} e^{-4 t}$
$\hat{\Delta}$ (B) $y(t)=C_{1} e^{2 t}+C_{2} e^{4 t}$
(C) $y(t)=e^{2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(D) $y(t)=e^{-2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(E) $y(t)=C_{1} e^{2 t}+C_{2} t e^{4 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

(A) $y(t)=C_{1} e^{3 t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{3 t}$
(C) $y(t)=C_{1} e^{3 t}+C_{2} e^{-3 t}$
(D) $y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}$
(E) $y(t)=C_{1} e^{3 t}+C_{2} v(t) e^{3 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+10 y=0
$$

(A) $y(t)=C_{1} e^{3 t}+C_{2} e^{t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{-t}$
(C) $y(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t)$
(D) $y(t)=e^{t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)$
(E) $y(t)=e^{3 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)$

Second order, linear, constant coeff, nonhomogeneous (3.5)

- Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$
y^{\prime \prime}-6 y^{\prime}+8 y=\sin (2 t)
$$

- But first, a bit more on the connections between matrix algebra and differential equations...

Some connections to linear (matrix) algebra

- An $m \times n$ matrix is a gizmo that takes an n-vector and returns an $m-$ vector:

$$
\bar{y}=A \bar{x}
$$

- It is called a linear operator because it has the following properties:

$$
\begin{aligned}
A(c \bar{x}) & =c A \bar{x} \\
A(\bar{x}+\bar{y}) & =A \bar{x}+A \bar{y}
\end{aligned}
$$

- Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$
z=L[y]=\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y
$$

- This one is linear because

$$
\begin{aligned}
L[c y] & =c L[y] \\
L[y+z] & =L[y]+L[z]
\end{aligned}
$$

Note: y, z are functions of t and c is a constant.

Some connections to linear (matrix) algebra

- A homogeneous matrix equation has the form

$$
A \bar{x}=\overline{0}
$$

- A non-homogeneous matrix equation has the form

$$
A \bar{x}=\bar{b}
$$

- A homogeneous differential equation has the form

$$
L[y]=0
$$

- A non-homogeneous differential equation has the form

$$
L[y]=g(t)
$$

Some connections to linear (matrix) algebra

Systems of equations written in operator notation.
System of equations

$$
\begin{array}{r}
x_{1}+2 x_{2}=4 \\
3 x_{1}+4 x_{2}=7
\end{array}
$$

$$
A \bar{x}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Equation in operator notation

$$
A \bar{x}=\binom{4}{7}
$$

Some differential equations we've seen, written in operator notation.

Differential equation

$$
t \frac{d y}{d t}+2 y=4 t^{2}
$$

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0
$$

Operator definition

$$
L[y]=t \frac{d y}{d t}+2 y
$$

$$
L[y]=y^{\prime \prime}+4 y^{\prime}+4 y
$$

Equation in operator notation
$L[y]=4 t^{2}$
$L[y]=0$

Some connections to linear (matrix) algebra

- A more detailed connection between matrix equations and DEs:
- A vector as a function

$$
\bar{b}=\left(\begin{array}{c}
\sin (1) \\
\sin (2) \\
\sin 33 \\
\sin 64 \\
\sin (3) \\
\sin (6)
\end{array}\right)
$$

- A function is just a vector with an infinite number of entries.

$$
y(t)=\sin (t)
$$

- A differential operator is just a really big matrix.

