Today

- Solving ODEs using Laplace transforms
- The Heaviside and associated step and ramp functions
- ODE with a ramped forcing function

Solving IVPs using Laplace transforms

- Solve the equation $y^{\prime \prime}+4 y=0$ with initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 Y(s)=0 \\
s^{2} Y(s)-s-0+4 Y(s)=0 \\
s^{2} Y(s)+4 Y(s)=s \\
Y(s)=\frac{s}{s^{2}+4}
\end{gathered}
$$

- To find $y(t)$, we have to invert the transform. What $y(t)$ would have $Y(s)$ as its transform?
- Recall that $\mathcal{L}\{\cos (\omega t)\}=\frac{s}{\omega^{2}+s^{2}}$. So $y(t)=\cos (2 t)$.

Solving IVPs using Laplace transforms

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.
$\quad Y(s)=\frac{s+6}{\Omega}$
- To find $\mathrm{y}(\mathrm{t})$, we hav $\lambda=\frac{-6 \pm i \sqrt{52-36}}{2}=-3 \pm 2 i \quad$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?

$$
\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}
$$

$$
Y(s)=\frac{s+v+3}{s^{2}+6 s+9+4}
$$

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

$$
\begin{aligned}
& =\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4} \\
& =\frac{s+3}{(s+3)^{2}+4}+\frac{3}{2} \frac{2}{(s+3)^{2}+4}
\end{aligned}
$$

$$
\mathcal{L}\left\{e^{-3 t} \cos t\right\}=\frac{s+3}{1+(s+3)^{2}}
$$

$$
y(t)=e^{-3 t} \cos (2 t)+\frac{3}{2} e^{-3 t} \sin (2 t)
$$

Solving IVPs using Laplace transforms - complex

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{array}{r}
Y(s)=\frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}=\frac{s+6}{(s+3)^{2}+4}=\frac{s+3+3}{(s+3)^{2}+4} \\
=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4}=\frac{s+3}{(s+3)^{2}+2^{2}}+\frac{3}{2} \frac{2}{(s+3)^{2}+2^{2}} \\
y(t)=e^{-3 t} \cos (2 t)+\frac{3}{2} e^{-3 t} \sin (2 t)
\end{array}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square in the denominator.
3. Put numerator in form ($s+\alpha$) $+\beta$ where ($s+\alpha$) is the completed square.
4. Fix up coefficient of the term with no s in the numerator.
5. Invert.

Solving IVPs using Laplace transforms - real

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+5 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{aligned}
Y(s) & =\frac{s+6}{s^{2}+6 s+5}=\frac{s+6}{s^{2}+6 s+9-4}=\frac{s+6}{(s+3)^{2}-4}=\frac{s+6}{(s+1)(s+5)} \\
& =\frac{5}{4} \cdot \frac{1}{s+5}-\frac{1}{4} \cdot \frac{1}{s+1} \quad \text { (partial fraction decomposition) } \\
y(t) & =\frac{5}{4} e^{-5 t}-\frac{1}{4} e^{-t}
\end{aligned}
$$

1. Does the denominator have real or complex roots? Real.
2. Factor the denominator (factor directly, complete the square or QF).
3. Partial fraction decomposition.
4. Invert. Recall that $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$.

Solving IVPs using Laplace transforms - nonhomog

- What is the transformed equation for the IVP

$$
\begin{aligned}
& y^{\prime}+6 y=e^{2 t} \\
& y(0)=2
\end{aligned}
$$

(A) $Y^{\prime}(s)+6 Y(s)=\frac{1}{s+2}$
(E) Explain, please.
(B) $Y^{\prime}(s)+6 Y(s)=\frac{1}{s-2}$
(C) $s Y(s)+2+6 Y(s)=\frac{1}{s+2}$
$\hat{\omega}(\mathrm{D}) s Y(s)-2+6 Y(s)=\frac{1}{s-2}$

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-2 \\
& \mathcal{L}\{6 y(t)\}=6 Y(s) \\
& \mathcal{L}\left\{e^{2 t}\right\}=\frac{1}{s-2}
\end{aligned}
$$

$$
\mathcal{L}\left\{e^{2 t}\right\}=\int_{0}^{\infty} e^{(2-s) t} d t
$$

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Solving IVPs using Laplace transforms

- Find the solution to $y^{\prime}+\underline{6 y}=\underline{e^{2 t}}$, subject to IC $y(0)=2$.

$$
\begin{aligned}
& \begin{aligned}
& \frac{s Y(s)-2}{}+\underline{6 Y(s)}=\frac{1}{s-2} \\
& Y(s)=\left(2+\frac{1}{s-2}\right) /(s+6)
\end{aligned} \\
& =\frac{2}{s+6}+\frac{1}{(s-2)(s+6)} \\
& \text {) } \frac{1}{(s-2)(s+6)}=\frac{A}{s-2}+\frac{B}{s+6} \\
& 1=A(s+6)+B(s-2) \\
& (s=2) \quad 1=8 A \\
& (s=-6) \quad 1=-8 B \\
& y(t)=2 e^{-6 t} \mathcal{L}^{-1}\left(\frac{1}{(s-2)(s+6)}\right) \\
& y(t)=2 e^{-6 t}+\frac{1}{8} \mathcal{L}^{-1}\left(\frac{1}{s-2}-\frac{1}{s+6}\right) \\
& y(t)=\frac{15}{8} e^{-6 t}+\frac{1}{8} e^{2 t} \\
& y(t)=2 e^{-6 t}+\frac{1}{8} e^{2 t}-\frac{1}{8} e^{-6 t} \\
& y_{h}(t)=C e^{-6 t} \\
& C=\frac{15}{8} \quad y_{p}(t)=\frac{1}{8} e^{2 t}
\end{aligned}
$$

Solving IVPs using Laplace transforms

- With a forcing term, the equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

has Laplace transform

$$
a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s)
$$

- Solving for $\mathrm{Y}(\mathrm{s})$:

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
$$

transform of homogeneous
solution with two degrees of freedom ($\mathrm{y}(0)$ and $\mathrm{y}^{\prime}(0)$ act like C_{1} and C_{2}.
transform of particular solution

Solving IVPs using Laplace transforms

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
$$

- If denominator has distinct real factors, use PFD and get

$$
Y_{h}(s)=\frac{A}{s-r_{1}}+\frac{B}{s-r_{2}} \quad \rightarrow \quad y_{h}(t)=A e^{r_{1} t}+B e^{r_{2} t}
$$

- If denominator has repeated real factors, use PFD and get

$$
\begin{gathered}
Y_{h}(s)=\frac{A}{s-r}+\frac{B}{(s-r)^{2}} \quad \rightarrow \quad y_{h}(t)=A e^{r t}+B t e^{r t} \\
\mathcal{L}\{1\}=\frac{1}{s} \quad \mathcal{L}\{t\}=\frac{1}{s^{2}} \quad \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}} \quad \mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
\end{gathered}
$$

Solving IVPs using Laplace transforms

- Unique real factors, $Y_{h}(g)=\frac{A}{s-y_{1}}+\frac{B}{s-r_{2}} \rightarrow \quad y_{h}(t)=A e^{r_{1} t}+B e^{r_{2} t}$
- Repeated factor, $Y_{h}(s)=\frac{A}{s-r_{1}}+\frac{B}{\left(s-r_{2}\right)^{2}} \rightarrow \quad y_{h}(t)=A e^{r_{1} t}+B t e^{r_{1} t}$
- No real factors, eomplete square, simplify and get

$$
\begin{gathered}
Y_{h}(s)=\frac{A s}{(s-\alpha)^{2}+\beta^{2}}+\frac{B}{(s-\alpha)^{2}+\beta^{2}} \quad\left(A=a y(0), B=a y^{\prime}(0)+b y(0)\right) \\
Y_{h}(s)=\frac{A(s-\alpha)+A \alpha}{(s-\alpha)^{2}+\beta^{2}}+\frac{B}{(-\alpha)^{2}+\beta^{2}} \\
Y_{h}(s)=\frac{A(s-\alpha)}{(s-\alpha)^{2}+\beta^{2}}+\frac{B+A \alpha}{(s-\alpha)^{2}-\beta^{2}} \\
Y_{h}(s)=\frac{A(s-\alpha)}{(s-\alpha)^{2}+\beta^{2}}+\frac{B+A \alpha}{\beta} \frac{\beta}{(s-\alpha)^{2}+\beta^{2}} \quad \rightarrow y(t)=e^{-\alpha t}\left(A \cos (\beta t)+\frac{B+A \alpha}{\beta} \sin (\beta t)\right)
\end{gathered}
$$

Solving IVPs using Laplace transforms

- Inverting the forcing/particular part $Y_{p}(s)=\frac{G(s)}{a s^{2}+b s+c}$.
- Usually a combination of similar techniques (PFD, manipulating constants) works.
- Which is the correct PFD form for $Y(s)=\frac{s^{2}+2 s-3}{(s-1)^{2}\left(s^{2}+4\right)}$?

$$
\begin{aligned}
\text { (A) } Y(s) & =\frac{A}{(s-1)^{2}}+\frac{B}{\left(s^{2}+4\right)} \\
\text { (B) } Y(s) & =\frac{A s+B}{(s-1)^{2}}+\frac{C s+D}{\left(s^{2}+4\right)} \\
\text { (C) } Y(s) & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{\left(s^{2}+4\right)} \\
\hdashline(D) ~ & (s)
\end{aligned}=\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C s+D}{\left(s^{2}+4\right)}
$$

(E) MATH 101 was a long time ago.

Laplace transforms (so far)

$f(t)$	$\frac{F(s)}{s}$
1	$\frac{1}{s-a}$
$e^{a t}$	$\frac{1}{s^{n+1}}$
t^{n}	$\frac{a}{s^{2}+a^{2}}$
$\sin (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\cos (a t)$	$F(s-a)$
$e^{a t} f(t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$

Step function forcing

- We define the Heaviside function $u_{c}(t)= \begin{cases}0 & t<c, \\ 1 & t \geq c .\end{cases}$
- We use it to model on/off behaviour in ODEs.

- For example, in LRC circuits, Kirchoff's second law tells us that:

$$
\begin{aligned}
& V_{1}+V_{2}+V_{3}=E(t) \\
& L I^{\prime}+I R+\frac{1}{C} Q=E(t) \\
& I=Q^{\prime} \\
& L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
\end{aligned}
$$

- If $\mathrm{E}(\mathrm{t})$ is a voltage source that can be turned on/off, then $\mathrm{E}(\mathrm{t})$ is step-like.
- For example, turn E on at $t=2$ and off again at $t=5$:

Step function forcing

- Use the Heaviside function to rewrite $g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\ 1 & \text { for } 2 \leq t<5 .\end{cases}$

> (A) $g(t)=u_{2}(t)+u_{5}(t)$
> $\omega(\mathrm{B}) g(t)=u_{2}(t)-u_{5}(t)$
> $\forall(\mathrm{C}) g(t)=u_{2}(t)\left(1-u_{5}(t)\right)$
> (D) $g(t)=u_{5}(t)-u_{2}(t)$
> (E) Explain, please.
> - For more on writing down functions in Heaviside notation see:

Step function forcing

- What is the Laplace transform of

$$
\begin{aligned}
g(t) & = \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5 \\
1 & \text { for } 2 \leq t<5\end{cases} \\
& =u_{2}(t)-u_{5}(t) ?
\end{aligned}
$$

$\mathcal{L}\left\{u_{c}(t)\right\}=\int_{0}^{\infty} e^{-s t} u_{c}(t) d t$
$0 \quad=\int_{c}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{c} ^{\infty}=\frac{e^{-s c}}{s} \quad(s>0)$
$\mathcal{L}\left\{u_{2}(t)-u_{5}(t)\right\}=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \quad(s>0)$

$$
\text { Recall: } \begin{aligned}
\mathcal{L}\{f(t)+g(t)\} & =\int_{0}^{\infty} e^{-s t}(f(t)+g(t)) d t \\
& =\int_{0}^{\infty} e^{-s t} f(t) d t+\int_{0}^{\infty} e^{-s t} g(t) d t \\
& =\mathcal{L}\{f(t)\}+\mathcal{L}\{g(t)\}
\end{aligned}
$$

Step function forcing

- Suppose we know the transform of $f(t)$ is $F(s)$.
- It will be useful to know the transform of

$$
\begin{aligned}
k(t) & =\left\{\begin{array}{cl}
0 & \text { for } t<c, \\
f(t-c) & \text { for } t \geq c .
\end{array}\right. \\
& =u_{c}(t) f(t-c) \\
\mathcal{L}\{k(t)\} & =\int_{0}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t \\
& =\int_{c}^{\infty} e^{-s t} f(t-c) d t \quad u=t-c, d u=d t \\
& =\int_{0}^{\infty} e^{-s(u+c)} f(u) d u \\
& =e^{-s c} \int_{0}^{\infty} e^{-s u} f(u) d u \quad=e^{-s c} F(s)
\end{aligned}
$$

