$$ar^2 + br + c = 0$$

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$
 - ii. A repeated real root: $b^2 4ac = 0$.
 - iii. Two complex roots: $b^2 4ac < 0$.

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$
 - ii. A repeated real root: $b^2 4ac = 0$.
 - iii. Two complex roots: $b^2 4ac < 0$.
- For case ii ($r_1 = r_2 = r$), we need another independent solution!

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$
 - ii. A repeated real root: $b^2 4ac = 0$.
 - iii. Two complex roots: $b^2 4ac < 0$.
- For case ii ($r_1 = r_2 = r$), we need another independent solution!
- Reduction of order a method for guessing another solution.

ullet You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.
- Use Reduction of order to find a second solution.

$$y_2(t) = v(t)e^{-2t}$$

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.
- Use Reduction of order to find a second solution.

$$y_2(t) = v(t)e^{-2t}$$

Heuristic explanation for exponential solutions and Reduction of order.

For the equation y''+4y'+4y=0 , say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$.

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$. $y_2'(t)=v'(t)e^{-2t}-2v(t)e^{-2t}$ $\downarrow \\ 4y_2(t)=4v(t)e^{-2t}$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$. $y_2'(t)=v'(t)e^{-2t}-2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$v'' = 0$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_1$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ $\downarrow \qquad \qquad \downarrow \qquad \qquad$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_1 \implies v(t) = C_1t + C_2$$

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$). $=(C_1t+C_2)e^{-2t}$

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$). $=(C_1t+C_2)e^{-2t}$ $=C_1te^{-2t}+C_2e^{-2t}$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=C_1te^{-2t}+C(e^{-2t})$$

$$y_1(t)$$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=C(te^{-2t})+C(e^{-2t})$$

$$y_2(t)$$
 $y_1(t)$

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$). $=(C_1t+C_2)e^{-2t}$ $y(t)=C(te^{-2t})+C(e^{-2t})$ $y_2(t)$ $y_1(t)$

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$). $=(C_1t+C_2)e^{-2t}$ $y(t)=C(te^{-2t})+C(e^{-2t})$ $y_1(t)$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C_0e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t)$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C_0e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$

 $y_2(t) y_1(t)$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C_2e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t}$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=(C_1t+C_2)e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

Reduction of order

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=u(t)-C(te^{-2t})+C(e^{-2t})$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$

 $y_2(t) y_1(t)$

Is this the general solution? Calculate the Wronskian:

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

So yes!

• For the general case, ay''+by'+cy=0 , by assuming $y(t)=e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

• For the general case, ay''+by'+cy=0 , by assuming $y(t)=e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

There are three cases.

• For the general case, ay''+by'+cy=0, by assuming $y(t)=e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0. (r)$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0$. (r)

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

• For the general case, ay''+by'+cy=0, by assuming $y(t)=e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0$. (r)

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

iii. Two complex roots: $b^2 - 4ac < 0$. $(r_{1,2} = \alpha \pm i\beta)$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: b^2 - 4ac = 0. (r)

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

iii. Two complex roots: $b^2 - 4ac < 0$. $(r_{1,2} = \alpha \pm i\beta)$

$$y = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

(B)
$$y(t) = C_1 e^{2t} + C_2 e^{4t}$$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t}(C_1\cos(4t) + C_2\sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

$$\Rightarrow$$
 (B) $y(t) = C_1 e^{2t} + C_2 e^{4t}$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t}(C_1\cos(4t) + C_2\sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

(D)
$$y(t) = C_1 e^{3t} + C_2 t e^{3t}$$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

$$\uparrow$$
 (D) $y(t) = C_1 e^{3t} + C_2 t e^{3t}$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

$$y'' - 6y' + 10y = 0$$

(A)
$$y(t) = C_1 e^{3t} + C_2 e^t$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{-t}$$

(C)
$$y(t) = C_1 \cos(3t) + C_2 \sin(3t)$$

(D)
$$y(t) = e^t(C_1\cos(3t) + C_2\sin(3t))$$

(E)
$$y(t) = e^{3t}(C_1\cos(t) + C_2\sin(t))$$

$$y'' - 6y' + 10y = 0$$

(A)
$$y(t) = C_1 e^{3t} + C_2 e^t$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{-t}$$

(C)
$$y(t) = C_1 \cos(3t) + C_2 \sin(3t)$$

(D)
$$y(t) = e^t(C_1\cos(3t) + C_2\sin(3t))$$

$$\Rightarrow$$
 (E) $y(t) = e^{3t}(C_1 \cos(t) + C_2 \sin(t))$

 Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$y'' - 6y' + 8y = \sin(2t)$$

 But first, a bit more on the connections between matrix algebra and differential equations . . .

• An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$

- An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$
- It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

- An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$
- It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

 Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$z = L[y] = \frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y$$

• An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$

• It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

 Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$z = L[y] = \frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y$$

This one is linear because

$$L[cy] = cL[y]$$
$$L[y+z] = L[y] + L[z]$$

Note: y, z are functions of t and c is a constant.

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

A homogeneous differential equation has the form

$$L[y] = 0$$

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

A homogeneous differential equation has the form

$$L[y] = 0$$

A non-homogeneous differential equation has the form

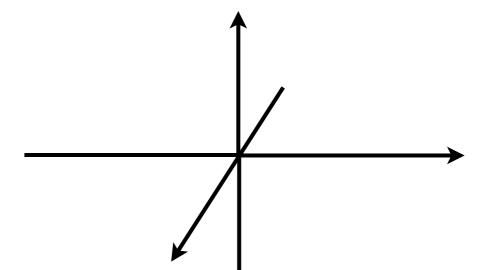
$$L[y] = g(t)$$

- ullet The matrix equation $A\overline{x}=\overline{0}$ could have (depending on A)
 - (A) no solutions.
 - (B) exactly one solution.
 - (C) a one-parameter family of solutions.
 - (D) an n-parameter family of solutions.

- ullet The matrix equation $A\overline{x}=\overline{0}$ could have (depending on A)
 - (A) no solutions.
 - (B) exactly one solution.
 - (C) a one-parameter family of solutions.
 - (D) an n-parameter family of solutions.

• The matrix equation $A\overline{x}=\overline{0}$ could have (depending on A)

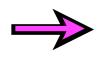
(A) no solutions.



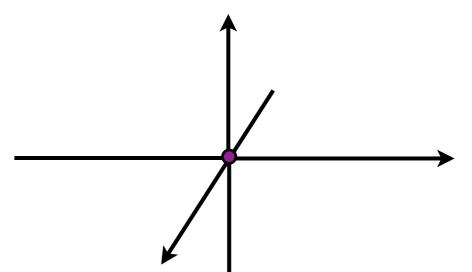
- (C) a one-parameter family of solutions.
- (D) an n-parameter family of solutions.

Possibilities:

- \bullet The matrix equation $A\overline{x}=\overline{0}\,$ could have (depending on A)
 - (A) no solutions.



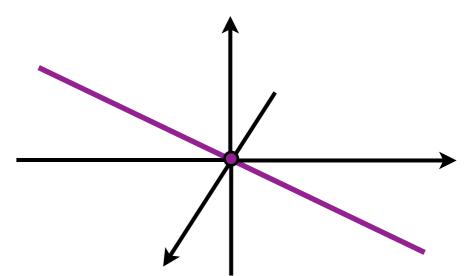
- (B) exactly one solution.
- (C) a one-parameter family of solutions.
- (D) an n-parameter family of solutions.



Possibilities:

$$\overline{x} = \overline{0}$$

- ullet The matrix equation $A\overline{x}=\overline{0}$ could have (depending on A)
 - (A) no solutions.
 - (B) exactly one solution.





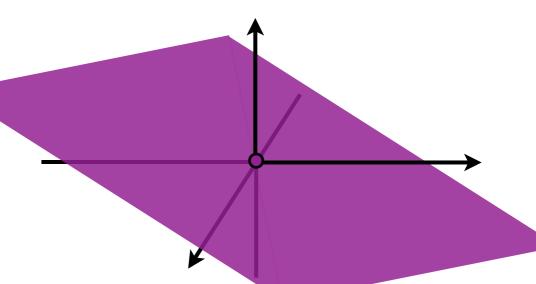
- (C) a one-parameter family of solutions.
- (D) an n-parameter family of solutions.

Choose the answer that is incorrect.

Possibilities:

$$\overline{x} = C \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

- ullet The matrix equation $A\overline{x}=\overline{0}$ could have (depending on A)
 - (A) no solutions.
 - (B) exactly one solution.
 - (C) a one-parameter family of solutions.



(D) an n-parameter family of solutions.

Possibilities:

$$\overline{x} = C_1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

 \bullet Example 1. Solve the equation $A\overline{x}=\overline{0}\;$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$
 Each equation describes a plane.

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$
 Each equation describes a plane.

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix}$$

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$
 Each equation describes a plane.

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix}$$

In this case, only two of them really matter.

• Example 1. Solve the equation $A\overline{x}=0$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$
 Each equation describes a plane.

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \text{In this case, only} \\ \text{two of them really} \\ \text{matter.} \end{array}$$

 \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever

(because it doesn't have a leading one).

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.

$$\bullet$$
 so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

• Thus, the solution can be written as

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.

$$\bullet$$
 so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- so $x_1-\frac{1}{3}x_3=0$ and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$

$$x_2 = -\frac{5}{3}x_3$$

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$

$$x_2 = -\frac{5}{3}x_3$$

$$x_3 = C$$

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-\frac{1}{3}x_3=0$ and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$
 $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$

$$x_3 = C$$

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$
 $x_1 = \frac{1}{3}C$ $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$ $x_3 = C$

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$
 $x_1 = \frac{1}{3}C$ $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$ $x_3 = C$

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_3 = C$$

 \bullet Thus, the solution can be written as $\overline{x}=\dfrac{C}{3}\begin{pmatrix}1\\-5\\3\end{pmatrix}$.

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 \qquad x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_3 = C$$

ullet Thus, the solution can be written as $\overline{x}=C'\left(egin{array}{c}1\\-5\\3\end{array}
ight)$.

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.

• so
$$x_1-\frac{1}{3}x_3=0$$
 and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$
 $x_1 = \frac{1}{3}C$ $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$

 $x_3 = C$

ullet Thus, the solution can be written as $\overline{x}=C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}$.

- ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.
- \bullet so $x_1-rac{1}{3}x_3=0$ and $x_2+rac{5}{3}x_3=0$ and x_3 can be whatever.

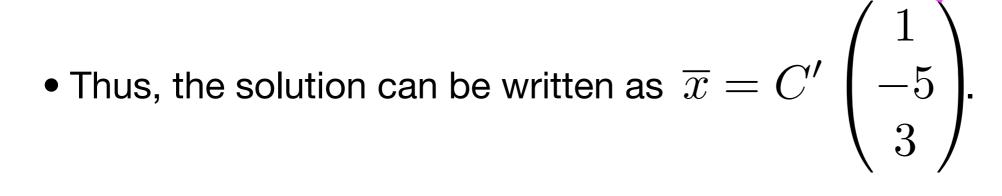
$$x_1 = \frac{1}{3}x_3 \qquad x_1 = \frac{1}{3}C$$

$$x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_2 = -\frac{5}{3}C$$

$$x_3 = C$$

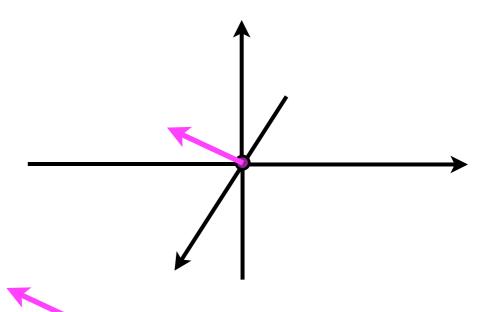


ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.

 $x_3 = C$

• so
$$x_1-\frac{1}{3}x_3=0$$
 and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$
 $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$



 \bullet Thus, the solution can be written as $\overline{x}=C'\begin{pmatrix}1\\-5\\2\end{pmatrix}$.

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$.

• so
$$x_1-\frac{1}{3}x_3=0$$
 and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_3 = C$$

 \bullet Thus, the solution can be written as $\overline{x}=C'\begin{pmatrix}1\\-5\\3\end{pmatrix}$.

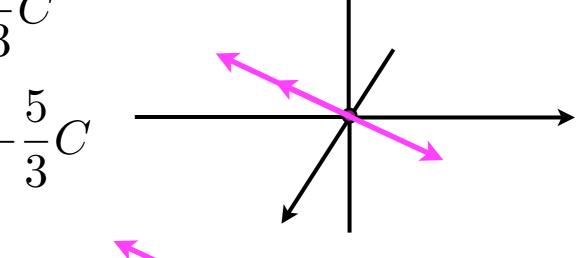
ullet Example 1. Solve the equation $A\overline{x}=0$.

 $x_3 = C$

• so
$$x_1-\frac{1}{3}x_3=0$$
 and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$
 $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$

$$x_2 = -\frac{1}{3}x_3$$
 $x_2 = -\frac{1}{3}x_3$



 \bullet Thus, the solution can be written as $\overline{x}=C'\begin{pmatrix}1\\-5\\ 2\end{pmatrix}$.

ullet Example 1. Solve the equation $A\overline{x}=0$.

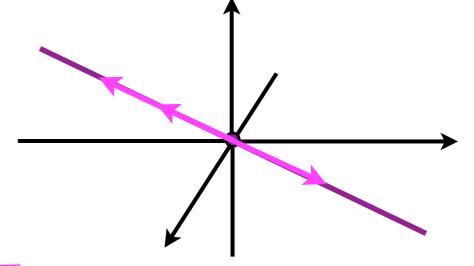
• so
$$x_1-\frac{1}{3}x_3=0$$
 and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$

$$x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_2 = -\frac{5}{3}C$$



$$x_3 = C$$

 \bullet Thus, the solution can be written as $\overline{x}=C'\left(\begin{array}{c} 1\\ -5\\ \end{array} \right)$.

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ullet so $x_1-2x_2+x_3=0$ and both x_2 and x_3 can be whatever.

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

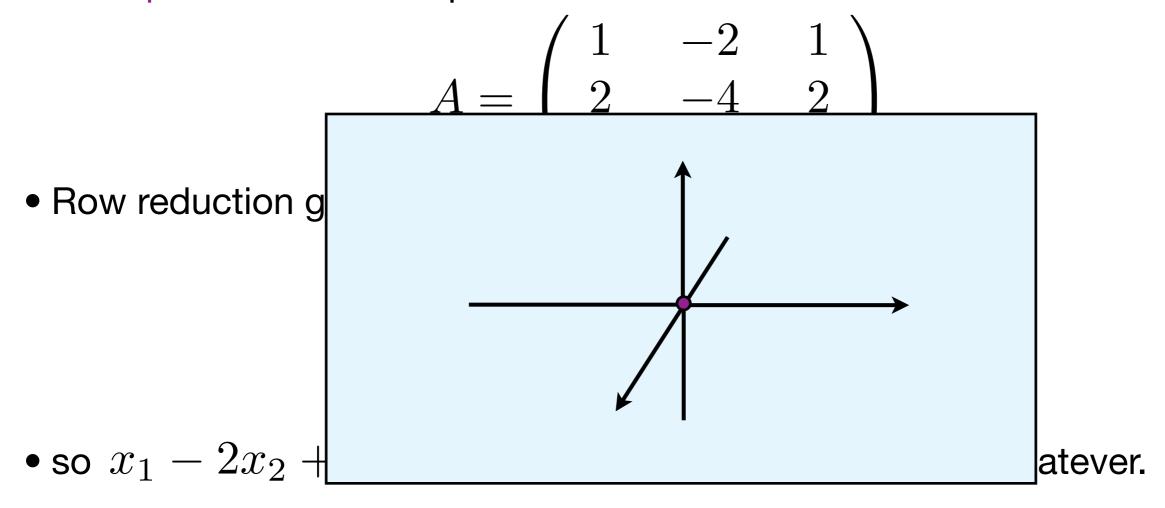
Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ullet so $x_1-2x_2+x_3=0$ and both x_2 and x_3 can be whatever.

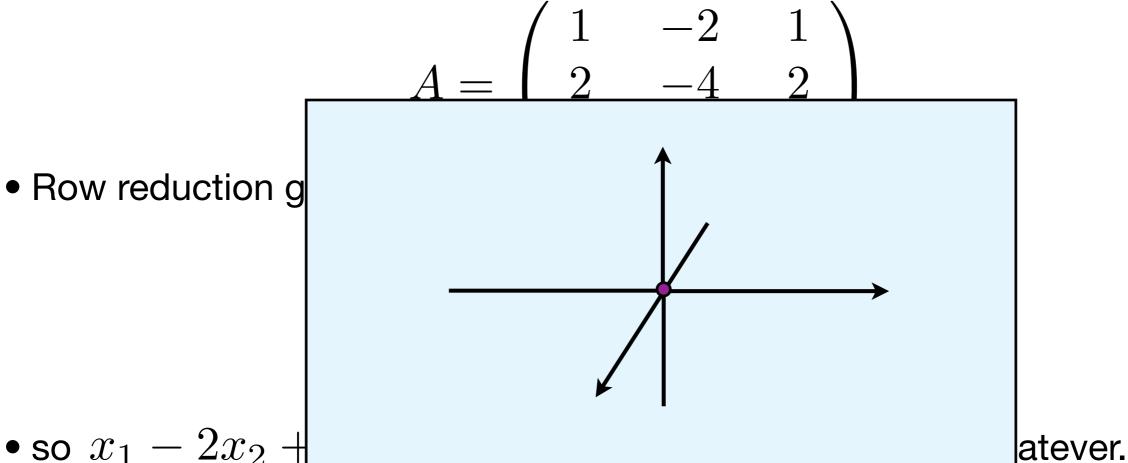
$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

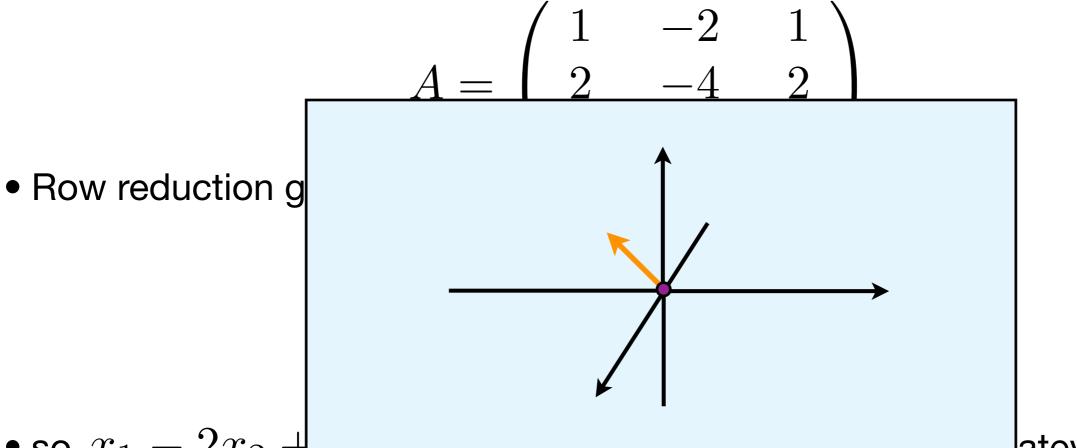
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



• so $x_1 - 2x_2 +$

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

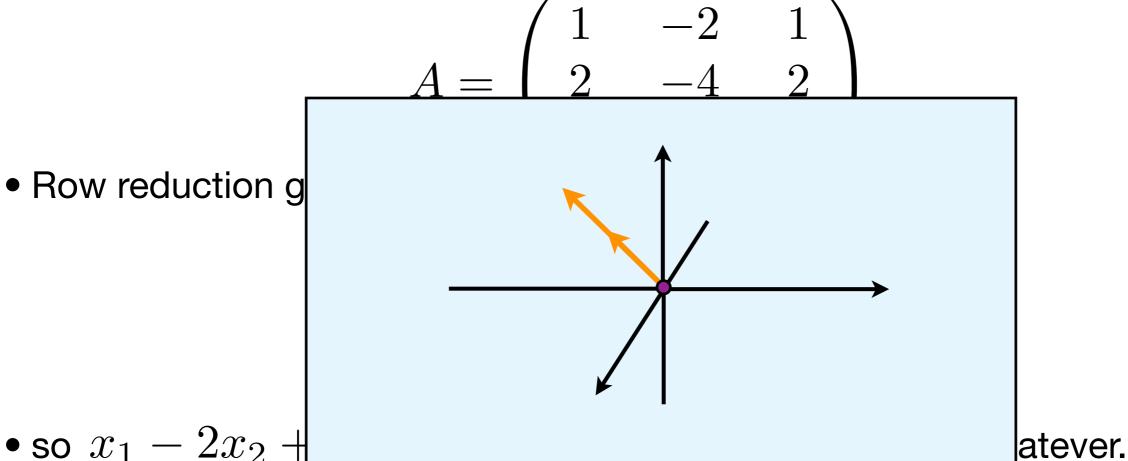
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



• so $x_1 - 2x_2 +$ atever.

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

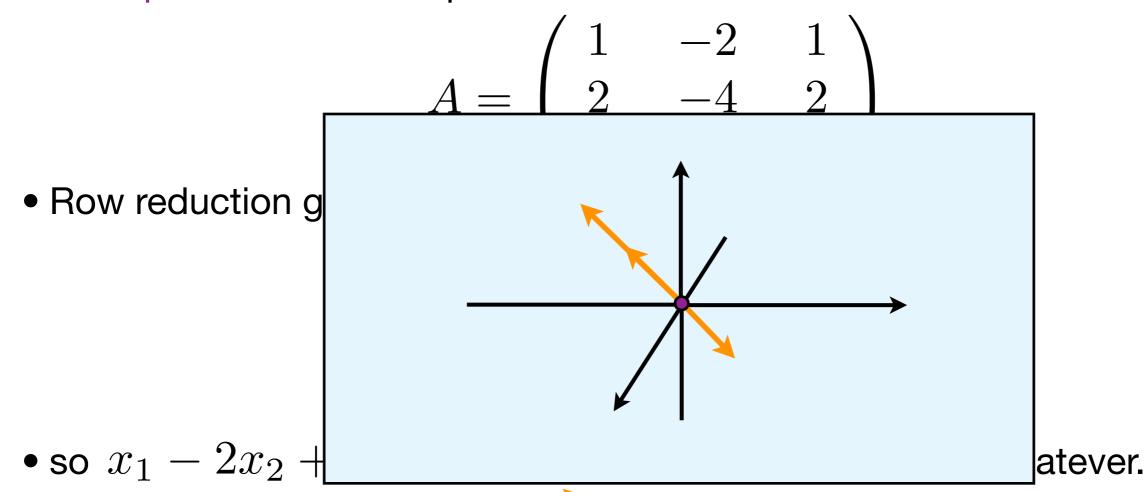
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



• so $x_1 - 2x_2 +$

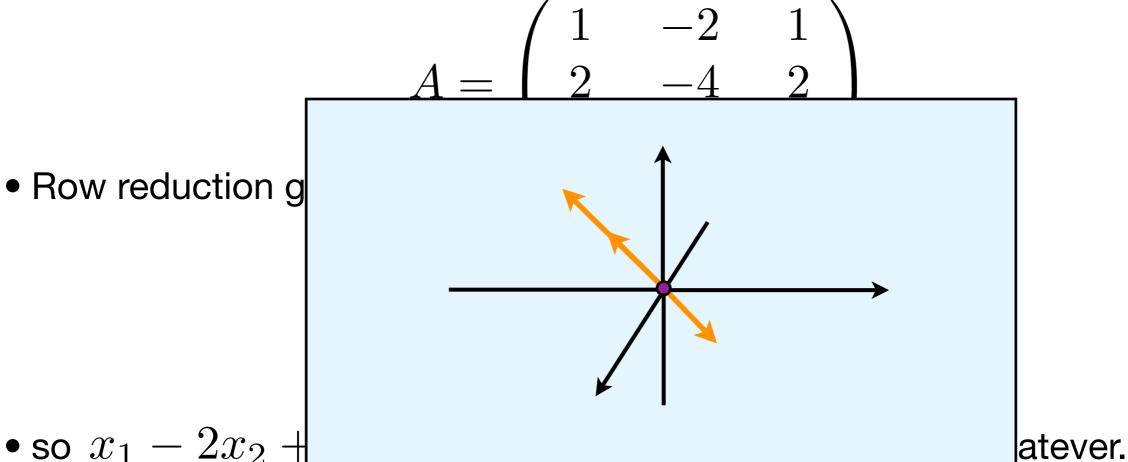
$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

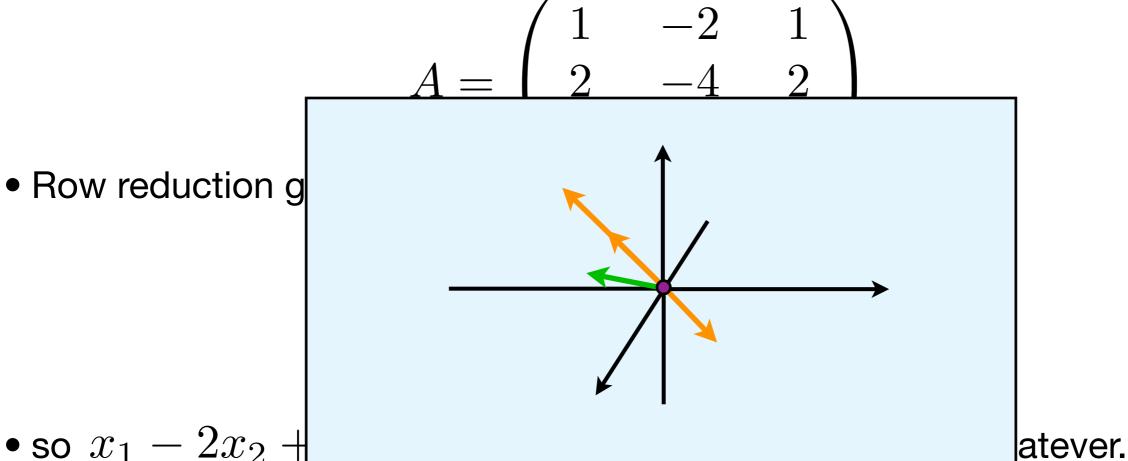
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



• so $x_1 - 2x_2 +$

 $\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

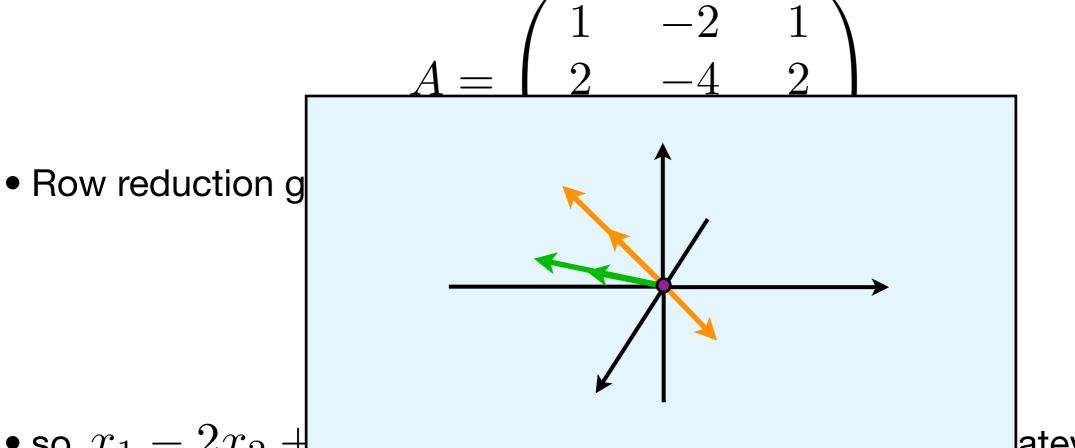
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



• so $x_1 - 2x_2 +$

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

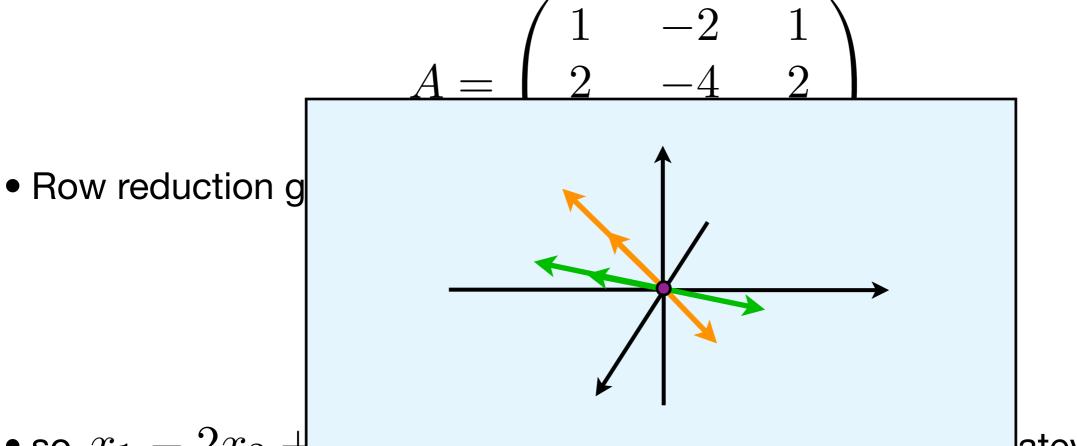
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



ullet so x_1-2x_2+ ______atever.

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

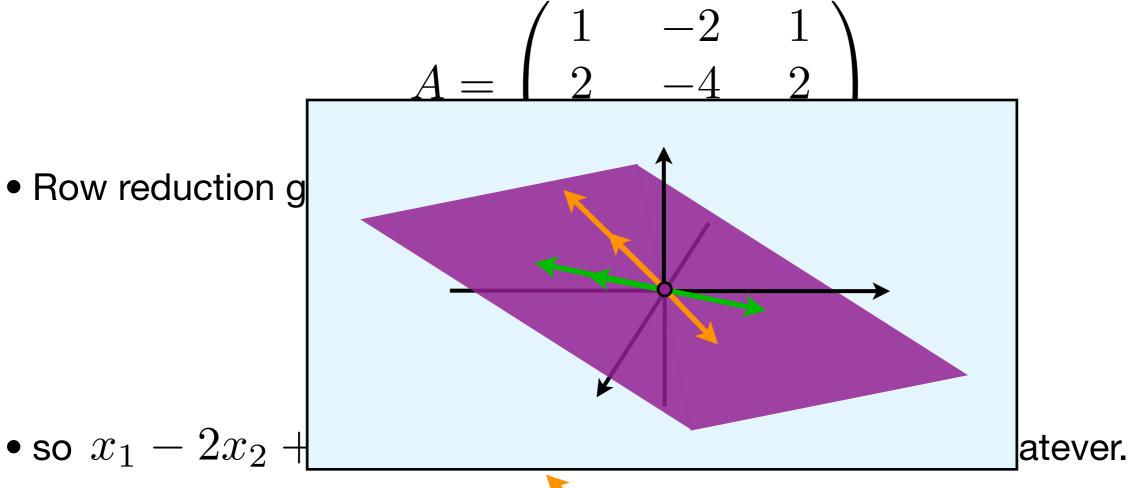
ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



• so $x_1 - 2x_2 +$ atever.

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

ullet Example 2. Solve the equation $A\overline{x}=\overline{0}$ where



$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

ullet Example 3. Solve the equation $A\overline{x}=b$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

ullet Example 3. Solve the equation $A\overline{x}=b$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

Row reduction gives

$$\begin{pmatrix}
1 & 0 & -1/3 & 2/3 \\
0 & 1 & 5/3 & 2/3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

ullet Example 3. Solve the equation $A\overline{x}=\overline{b}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

Row reduction gives

$$\begin{pmatrix}
1 & 0 & -1/3 & 2/3 \\
0 & 1 & 5/3 & 2/3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\bullet$$
 so $x_1-rac{1}{3}x_3=rac{2}{3}$ and $x_2+rac{5}{3}x_3=rac{2}{3}$ and x_3 can be whatever.

 \bullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

ullet Example 3. Solve the equation $A\overline{x}=b$.

$$\bullet$$
 so $x_1-\frac{1}{3}x_3=\frac{2}{3}$ and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$

ullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

ullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3} \qquad x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$$

$$\overline{x} = \frac{C}{3} \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

ullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

- ullet Example 3. Solve the equation $A\overline{x}=b$.
- so $x_1-\frac{1}{3}x_3=\frac{2}{3}$ and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

the general solution to the homogeneous problem

ullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

the general solution to the homogeneous problem

 \bullet Example 3. Solve the equation $A\overline{x}=\overline{b}$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

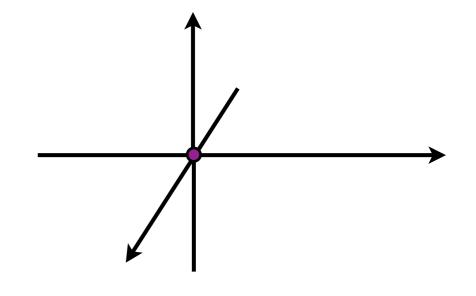
the general solution to the homogeneous problem

 \bullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$



the general solution to the homogeneous problem

 \bullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3} \qquad x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$$

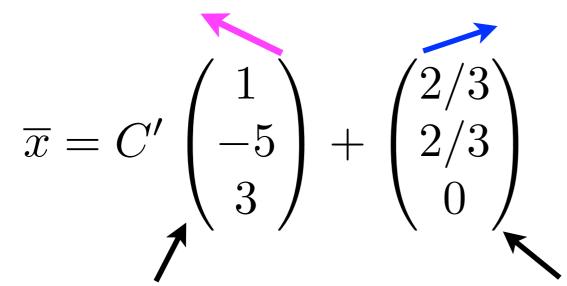
$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

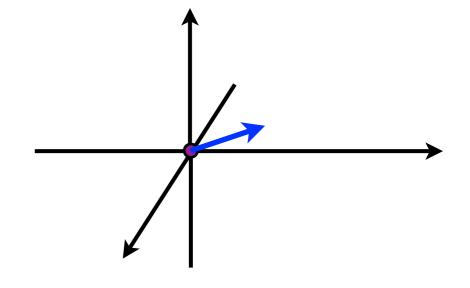
the general solution to the homogeneous problem

 \bullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$





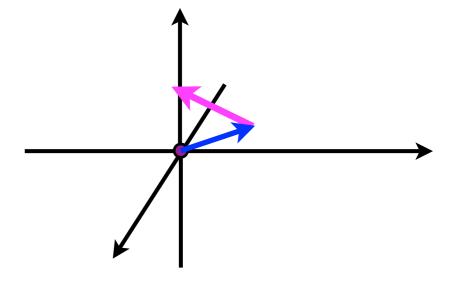
the general solution to the homogeneous problem

 \bullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$



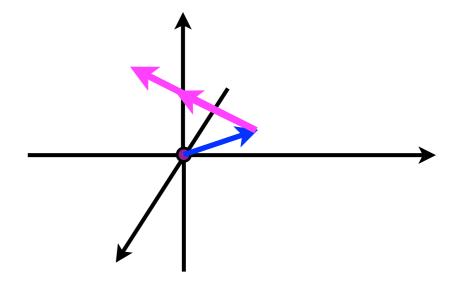
the general solution to the homogeneous problem

 \bullet Example 3. Solve the equation $A\overline{x}=b$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3}$$
 $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$



the general solution to the homogeneous problem

ullet Example 3. Solve the equation $A\overline{x}=\overline{b}$.

• so
$$x_1-\frac{1}{3}x_3=\frac{2}{3}$$
 and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3} \qquad x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$$

$$\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

the general solution to the homogeneous problem

• To solve a nonhomogeneous differential equation:

- To solve a nonhomogeneous differential equation:
 - 1. Find the general solution to the associated homogeneous problem, y_h(t).

- To solve a nonhomogeneous differential equation:
 - 1. Find the general solution to the associated homogeneous problem, y_h(t).

To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous problem, y_h(t).

To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous problem, y_h(t).

first order DE

To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous problem, y_h(t).

first order DE

19

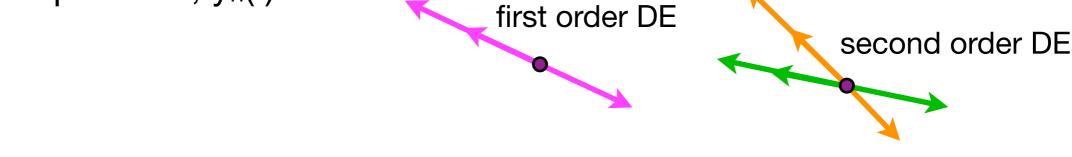
To solve a nonhomogeneous differential equation:

Find the general solution to the associated homogeneous problem, y_h(t).
 first order DE

2. Find a particular solution to the nonhomogeneous problem, yp(t).

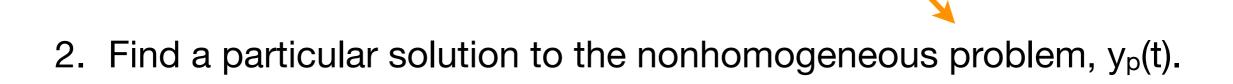
To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous problem, y_h(t).



2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).
 first order DE



3. The general solution to the nonhomogeneous problem is their sum:

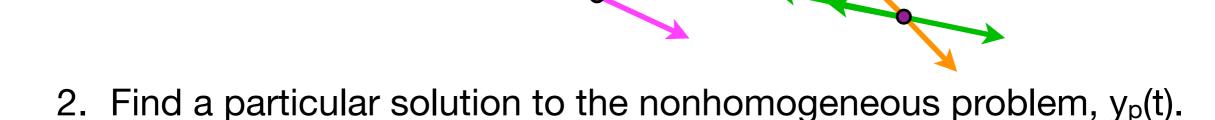
$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).
 first order DE

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).
 first order DE



3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).
 first order DE

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

• For step 2, try "Method of undetermined coefficients"...