Today

- Systems with complex eigenvalues how to figure out rotation
- Systems with a repeated eigenvalue
- Summary of 2x2 systems with constant coefficients.

Direction of rotation in complex eigenvalue case

$$\chi' = \chi - 8 \chi$$
$$\chi' = 8 \chi + \chi$$

(A) Solutions rotate clockwise and decay exponentially.

(B) Solutions grow exponentially without oscillating.

(C) Solutions rotate clockwise and grow exponentially.

 \bigstar (D) Solutions rotate counterclockwise and grow exponentially.

Direction of rotation in complex eigenvalue case

$$\begin{aligned} x' &= x - 8y \\ y' &= 8x + y \\ \overline{x}^{J} &= \begin{pmatrix} 1 & -8 \\ 8 & 1 \end{pmatrix} \overline{x} \\ \lambda^{2} - tr A \lambda + de + A = 0 \\ \lambda^{2} - \lambda \lambda + 65 = 0 \\ \lambda &= |\pm i8 \\ \chi \end{aligned}$$

Exponential growth

Counterclockwise rotation!

Repeated eigenvalues

- What happens when you get two identical eigenvalues?
- Two cases:
 - 1. The single eigenvalue has two distinct eigenvectors.
 - 2. There is only one eigenvector (matrix is defective).

1.
$$\overline{\mathbf{x}}' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \overline{\mathbf{x}}$$
 2. $\overline{\mathbf{x}}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \overline{\mathbf{x}}$

Repeated eigenvalues

1.
$$\overline{\mathbf{x}}' = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \overline{\mathbf{x}}$$

 $\det(A - \lambda I) = (\lambda - 3)^2 = 0$
 $\lambda = 3$
 $(A - \lambda I)\mathbf{v} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{v} = 0$

All vectors solve this so choose any two independent vectors:

$$\mathbf{v_1} = \begin{pmatrix} 1\\0 \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} 0\\1 \end{pmatrix}$$
$$\mathbf{x}(t) = C_1 e^{3t} \begin{pmatrix} 1\\0 \end{pmatrix} + C_2 e^{3t} \begin{pmatrix} 0\\1 \end{pmatrix}$$

2.
$$\overline{\mathbf{x}}' = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \overline{\mathbf{x}}$$

 $\det(A - \lambda I) = \lambda^2 - 4\lambda + 4 = 0$
 $\lambda = 2$
 $(A - \lambda I)\mathbf{v} = \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \mathbf{v} = 0$
 $\mathbf{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ <-- only 1 evector!
 $\mathbf{x}(t) = C_1 e^{2t} \mathbf{v} + C_2 e^{2t} (\mathbf{w} + t\mathbf{v})$
 $(A - \lambda I)\mathbf{w} = \mathbf{v}$
 $\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ <-- called
"generalized evector"

Systems of ODEs - steps for solving (2x2)

- Find evalues (λ) and evectors (**v**) or generalized evectors (**w**) of A:
 - Distinct real $\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v_1} + C_2 e^{\lambda_2 t} \mathbf{v_2}$ where λ and $\mathbf{v_i}$ solve (A - λ I) $\mathbf{v_i}$ =0.

• Complex -
$$\mathbf{x}(\mathbf{t}) = e^{\alpha t} \left[C_1 \left(\mathbf{a} \cos(\beta t) - \mathbf{b} \sin(\beta t) \right) + C_2 \left(\mathbf{a} \sin(\beta t) + \mathbf{b} \cos(\beta t) \right) \right]$$

where $\lambda_1 = \alpha + \beta i$ and $\mathbf{v_1} = \mathbf{a} + \mathbf{b} i$.

Repeated with two eigenvectors (diagonal matrices only) -

$$\mathbf{x}(t) = C_1 e^{\lambda t} \mathbf{v_1} + C_2 e^{\lambda t} \mathbf{v_2}$$

• Repeated with one eigenvector - $\mathbf{x}(t) = C_1 e^{\lambda t} \mathbf{v} + C_2 e^{\lambda t} (\mathbf{w} + t \mathbf{v})$ where λ and \mathbf{v} solve (A - λ I) $\mathbf{v} = \mathbf{0}$ and \mathbf{w} solves (A - λ I) $\mathbf{w} = \mathbf{v}$.

Steady state - two notions

- Forced mass-spring systems long term behaviour after transient dies down.
 - If the IC isn't right on $y_p(t)$, the homog solution decays exponentially (for $\alpha < 0$) so eventually only y_p remains.

 $y(t) = e^{\alpha t} (C_1 \cos(\beta t) + C_2 \sin(\beta t)) + y_p(t)$

- SS can be oscillation (not constant).
- Constant solutions of a system of ODEs (discussed in the next slides).
 - Transient may decay or grow exponentially.
 - Always constant solutions!

Steady states - constant solutions (set x'=0 and solve Ax=0).

- For the system of equations $\mathbf{x}' = A\mathbf{x}$, we always have $\mathbf{x}(t) = \mathbf{0}$ as a steady state solution.
- If A is a singular matrix with $A\mathbf{v} = \mathbf{0}$ then $\mathbf{x}(t) = \mathbf{v}$ is also a steady state solution.
 - In fact, $\mathbf{x}(t) = c\mathbf{v}$ is a steady state for all *c*.
 - It is also an eigenvector associated with eigenvalue $\lambda = 0$.
- If A is nonsingular then $\mathbf{x}(t) = \mathbf{0}$ is the only steady state.

Steady states

• Steady states are classified by the nature of the surrounding solutions:

• Quick way to determine how all other solutions behave:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
$$\det(A - \lambda I) = \det\begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + ad - bc$$
$$= \lambda^2 - \operatorname{tr}(A)\lambda + \det(A) \qquad = 0$$

• When do the solutions spiral IN to the origin?

$$\lambda^{2} - \operatorname{tr} A \lambda + \det A = 0$$
ensures negative real part
$$A = \frac{\operatorname{tr} A < 0}{(\operatorname{tr} A)^{2} < 4 \det A} \quad \lambda = \frac{\operatorname{tr} A}{2} \pm \frac{\sqrt{(\operatorname{tr} A)^{2} - 4 \det A}}{2}$$
(B)
$$\begin{cases} \operatorname{tr} A > 0 \quad \text{ensures complex evalue} \\ (\operatorname{tr} A)^{2} < 4 \det A \end{cases}$$
(C)
$$\begin{cases} \operatorname{tr} A < 0, \, \det(A) > 0 \\ (\operatorname{tr} A)^{2} > 4 \det A \end{cases}$$
(E) Explain, please.
(D)
$$\begin{cases} \operatorname{tr} A > 0, \, \det(A) > 0 \\ (\operatorname{tr} A)^{2} > 4 \det A \end{cases}$$

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2} - 4 \det A}}{2}$$

• When is the origin a stable node?

$$\lambda^{2} - \operatorname{tr} A \lambda + \det A = 0$$
(A)
$$\begin{cases} \operatorname{tr} A < 0 \\ (\operatorname{tr} A)^{2} < 4 \det A \end{cases}$$
(B)
$$\begin{cases} \operatorname{tr} A > 0 \\ (\operatorname{tr} A)^{2} < 4 \det A \end{cases}$$
(C)
$$\begin{cases} \operatorname{tr} A < 0, \ \det(A) > 0 \\ (\operatorname{tr} A)^{2} > 4 \det A \end{cases}$$
(E) Explain, please.
(D)
$$\begin{cases} \operatorname{tr} A < 0, \ \det(A) < 0 \\ (\operatorname{tr} A)^{2} > 4 \det A \end{cases}$$
(E) Explain, please.

$$\lambda = \frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2} - 4 \det A}{2}$$

1

 \mathbf{i}

Using the trace/determinant plane to classify systems

• Classify the steady state of the equation x'=Ax.

$$\begin{split} A &= \begin{pmatrix} 1 & 1 \\ -6 & -4 \end{pmatrix} \begin{array}{l} \operatorname{tr}(A) = -3 & \text{so some solutions decay.} \\ \det(A) &= 2 > 0 & \text{so not a saddle.} \\ (\operatorname{tr} A)^2 - 4 \det(A) &= 1 > 0 & \text{so not complex e-values.} \\ \end{array} \\ Therefore, two negative e-values => stable node. \\ \operatorname{tr}(A) &= 4 & \text{so some solutions grow.} \\ \det(A) &= 3 > 0 & \text{so not a saddle.} \\ (\operatorname{tr} A)^2 - 4 \det(A) &= 4 > 0 & \text{so not complex e-values.} \\ \end{array}$$

When given numbers, just find e-values but with parameters, need a way to derive conditions.

$$\lambda = \frac{\mathrm{tr}A \pm \sqrt{(\mathrm{tr}A)^2 - 4\det A}}{2}$$

Repeated evalue cases:

 λ <0, two indep. evectors.

 $\lambda > 0$, two indep. evectors.

 λ <0, only one evector.

One zero evalue (singular matrix):

 $\lambda_1=0, \lambda_2<0,$

