Today

- Summary of steps for solving the Diffusion Equation with homogeneous Dirichlet or Neumann BCs using Fourier Series.
- Nonhomogeneous BCs
- Mixed Dirichlet/Neumann BCs
- Method of Undetermined Coefficients and Fourier Series

- Steps to solving the PDE:
 - Determine the eigenfunctions for the problem (look at BCs).
 - Represent the IC u(x,0)=f(x) by a sum of eigenfunctions (Fourier series).
 - Write down the solution by inserting $e^{\lambda t}$ into each term of the FS.

$$u_t = Du_{xx}$$
 \longrightarrow PDE determines all possible eigenfunctions.

$$\left. \frac{du}{dx} \right|_{x=0,L} = 0$$
 —> BCs select a subset of the eigenfunctions.

$$u(x,0)=f(x)$$
 — IC is satisfied by adding up eigenfunctions.

$$u_t = Du_{xx}$$
 PDE determines all possible eigenfunctions.

Let's look for all possible eigenfunctions:

$$Dv_{xx}(x) = \lambda v(x)$$

Case I:
$$\lambda < 0$$
. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}}x\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}}x\right)$

For each value of λ <0, these are both eigenfunctions.

Case II:
$$\lambda$$
=0. $v_{xx}=0 \Rightarrow v_x=C_1 \Rightarrow v(x)=C_1x+C_2$

The eigenfunctions are therefore v(x)=1 and v(x)=x.

Case III:
$$\lambda>0$$
. $v_\lambda(x)=e^{\sqrt{\frac{\lambda}{D}}x}$ and $w_\lambda(x)=e^{-\sqrt{\frac{\lambda}{D}}x}$ These won't come up so I'll drop Case III.

$$u_t = Du_{xx}$$
 \longrightarrow PDE determines all possible eigenfunctions.

Case I:
$$\lambda < 0$$
. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}}x\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}}x\right)$

The BC at x=0 only works for $v_{\lambda}(x)$ and the BC at x=L only works for certain λ , in particular $\lambda = -n^2\pi^2D/L^2$.

Case II:
$$\lambda$$
=0. $(v(x) = 1)$ and $v(x) = x$

Case II:
$$\lambda$$
=0. $v(x)=1$ and $v(x)=x$ Represent IC u(x,0) = f(x) by $u(x,0)=\frac{a_0}{2}+\sum_{n=1}^\infty a_n\cos\frac{n\pi x}{L}$

$$u(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 Dt/L^2} \cos \frac{n\pi x}{L}$$

$$u(0,t) = u(2,t) = 0$$
 \longrightarrow BCs select a subset of the eigenfunctions.

Case I:
$$\lambda < 0$$
. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}}x\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}}x\right)$

The BC at x=0 only works for $w_{\lambda}(x)$ and the BC at x=L only works for certain λ , in particular $\lambda = -n^2\pi^2D/L^2$.

Case II:
$$\lambda=0$$
. $v(x)=1$ and $v(x)=x$

Represent IC u(x,0) = f(x) by
$$u(x,0) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 Dt/L^2} \sin \frac{n\pi x}{L}$$

$$\left. \begin{array}{l} u_t = 4u_{xx} \\ \frac{du}{dx} \right|_{x=0,2} = 0 \end{array}$$

$$u(x,0) = \sin \frac{3\pi x}{2}$$

(A)
$$u(x,t) = e^{-9\pi^2 t} \cos \frac{3\pi x}{2}$$
 doesn't satisfy IC.

(B)
$$u(x,t) = e^{-9\pi^2 t} \sin \frac{3\pi x}{2}$$
 don't satisfy BCs.

(C)
$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 t} \sin \frac{n \pi x}{2}$$
 $b_n = \int_0^2 \sin \frac{3 \pi x}{2} \sin \frac{n \pi x}{2} dx$

$$u_t = Du_{xx}$$

$$u(0,t) = 0$$

$$u(2,t) = 4$$

Nonhomogeneous BCs

$$f(x) = \sin\left(\sqrt{-\lambda}x\right)$$

an eigenfunction for the

homogeneous BCs

Case I:
$$\lambda$$
<0. $v_{\lambda}(x) = \cos\left(\sqrt{\frac{-\lambda}{D}}x\right)$ and $w_{\lambda}(x) = \sin\left(\sqrt{\frac{-\lambda}{D}}x\right)$

The BC at x=0 only works for $w_{\lambda}(x)$ and the BC at x=L almost works for certain λ , in particular $\lambda = -n^2\pi^2D/L^2$.

Case II:
$$\lambda$$
=0. $v(x)=1$ and $v(x)=2x$ a particular eigenfunction for the inhomogeneous BCs

Ultimately, we want
$$u(x,t)=2x+\sum_{n=1}^{\infty}b_ne^{-n^2\pi^2Dt/L^2}\sin\frac{n\pi x}{L}$$

What function do we use to calculate the Fourier series $\sum b_n \sin \frac{n\pi x}{L}$? n=1

(A)
$$u(x,0)$$
 (B) $u(x,0) - 2$ (C) $u(x,0) - 2x$ (D) $u(x,0) + 2x$

Solve the Diffusion Equation with nonhomogeneous BCs:

$$u_t = Du_{xx}$$

$$u(0,t) = a$$

$$u(L,t) = b$$

$$u(x,0) = f(x)$$

• Recall - rate of change is proportional to curvature so bumps get ironed out.

 v(x,t) satisfies the Diffusion Eq with homogeneous Dirichlet BCs and a new IC.

• Find the solution to the following problem:

$$u_t = 4u_{xx}$$

$$u(0,t) = 9$$

$$u(2,t) = 5$$

$$u(x,0) = \sin \frac{3\pi x}{2}$$

(A)
$$u(x,t) = e^{-9\pi^2 t} \sin \frac{3\pi x}{2}$$

(B)
$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 t} \sin \frac{n\pi x}{2}$$

$$(C) u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 t} \sin \frac{n\pi x}{2} + 9 - 2x$$

(D)
$$u(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-n^2 \pi^2 t} \cos \frac{n \pi x}{2}$$

where
$$b_n = \int_0^2 \left(\sin\frac{3\pi x}{2} - 9 + 2x\right) \sin\frac{n\pi x}{2} dx$$

How would you solve this one?

$$\begin{aligned} u_t &= 4u_{xx} \\ \frac{du}{dx} \Big|_{x=0,2} &= -2 \\ u(x,0) &= \cos \frac{3\pi x}{2} \end{aligned}$$

For you to think about...

$$u_t = 4u_{xx}$$

$$u(0,t) = 0 \qquad \frac{du}{dx} \Big|_{x=2} = 0$$

$$u(x,0) = x$$

Use sines? cosines?

Should be zero at x=0 so definitely sine functions.

Zero slope at x=2 so extend to x=4 and choose periods to get the slope right.

$$\sin \frac{n\pi x}{4}$$
:

$$\sin \frac{\pi x}{4}$$

$$\sin \frac{2\pi x}{4}$$

$$\sin \frac{3\pi x}{4}$$

$$\sin\frac{n\pi x}{4} : \sin\frac{\pi x}{4} \quad \sin\frac{2\pi x}{4} \quad \sin\frac{3\pi x}{4} \quad \sin\frac{4\pi x}{4}$$

How to extend t(x) so that its Fourier sine series has only odd values of n?

Extension is "even" about x=2 so \sin

Using Fourier Series with Method of Undet. Coeff.

• Find the solution to the following problem:

$$y'' + 16y = 4\sin(\pi t) - 3\sin(2\pi t)$$

$$y(t) = y_h(t) + y_p(t) \text{ where}$$

(A)
$$y_p(t) = A\sin(\pi t) + B\sin(2\pi t)$$
 Because no y' term, the cosine coefficients are all 0.

$$\text{(B)} \quad y_p(t) = \sum_{n=1}^\infty B_n \sin(n\pi t) \quad \text{Technically ok but all B}_n \\ \text{for n>2 will be zero.} \quad \text{Need whole family so}$$

(C) $y_p(t) = A\sin(\pi t) + B\cos(\pi t) + C\sin(2\pi t) + D\cos(2\pi t)$

$$(D) \quad y_p(t) = \sum_{n=1}^{\infty} A_n \cos(n\pi t) + \sum_{n=1}^{\infty} B_n \sin(n\pi t) \quad \text{Technically ok but all B}_n \text{ for n>2 and all A}_n \text{ will be zero.}$$

include cosines.

Note: we definitely did not use 4 and -3 as our coefficients for the guess!

Using Fourier Series with Method of Undet. Coeff.

• Find the solution to the following problem:

$$y'' + 16y = \sum_{n=1}^{8} b_n \sin(n\pi t)$$
 where the b_n are given values.

When the RHS is a sum, we can work with one term at a time so let's just focus on one of them, but not specify which:

$$y'' + 16y = b_n \sin(n\pi t)$$

Because there is no y' term, we can include only the sine function in our guess: $y_n(t) = B_n \sin(n\pi t)$

$$y_p''(t) + 16y_p(t) = -n^2 \pi^2 B_n \sin(n\pi t) + 16B_n \sin(n\pi t) = b_n \sin(n\pi t)$$

$$B_n=rac{b_n}{16-n^2\pi^2}$$
 $y_p(t)=\sum_{1}^8 B_n\sin(n\pi t)$ What if the 16 had been $4\pi^2$?