
Today

• Step and ramp functions (continued)


• The Dirac Delta function and impulse force


• (Modeling with delta-function forcing)



Step function forcing

• Solve using Laplace transforms:
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⇢
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Two methods:
1. Build from left to right, adding/subtracting what you need to 

make the next section:

2. Build each section independently:
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Delta-function forcing

mx

00 = g(t)

mx

0
����
b

a

=
Z b

a
g(t) dt

mv(b)�mv(a) =
Z b

a
g(t) dt

• Suppose a mass is sitting at position x and a force g(t) acts on it:

Z b

a
mx

00
dt =

Z b

a
g(t) dt

• To find x(t), integrate up:

Z b

a
g(t) dt•                     is the change in momentum of the mass - called impulse.

• If the force is large and sudden (say a hammer hitting the mass), maybe 
we just need to get this integral correct and the details don’t matter.



Delta-function forcing

g(t) =

8
><

>:

I0

2�
�� < t < �

0 otherwise

�momentum =
Z 1

�1
g(t) dt =

Z ⌧

�⌧

I0

2�
dt = I0

g(t) = I0d⌧ (t)

�(t) = lim
⌧!0

d⌧ (t)=

⇢
“1” for t = 0,

0 for t 6= 0.

• Let’s assume

impulse =

• For general purposes (any property that might change quickly, not just 
momentum), we define the Dirac Delta “function” as follows:

• I0 can be replaced by any type of 
quantity 


• e.g. m0 mass added to tank 
suddenly


• units of δ(t):  1 / time

= (u�⌧ (t)� u⌧ (t))
I0

2�

d⌧ (t) = (u�⌧ (t)� u⌧ (t))
1
2�



Some facts about the Delta “function”

Z b

a
f(t)�(t) dt = lim

�!0

1
2⇥

Z �

��
f(t) dt

= lim
⌧!0

F (�)� F (��)
2�

F 0(t) = f(t)

= F 0(0) = f(0)

�(t� c) = �(t)shift of        by c

Z b

a
�(t) dt = 1 a < 0, b > 0 and = 0 otherwise.

a < 0, b > 0
Z b

a
f(t)�(t) dt = f(0) and = 0 otherwise.

Z b

a
f(t)�(t� c) dt =

Z b+c

a+c
f(u + c)�(u) du = f(c) provided a<c<b.



Some facts about the Delta “function”

L{�(t� c)} =
Z 1

0
e�st�(t� c) dt

=
Z 1

�c
e�s(u+c)�(u) du = e�sc

for c > 0

Z b

a
f(t)�(t� c) dt = f(c)

d

dt
uc(t) = �(t� c)

Laplace transform of delta function:

Relationship of delta function to other functions:

d

dt
|t� c| = 2uc(t)� 1


