Today

e Homework
e one WW problem to appear today

e more TBA from the textbook to be handed in at the start of the
tutorial Monday April 7.

e Tutorial on Monday - worksheet instead of quiz.
e Orthogonality of sine and cosine functions
e Fourier series approximations to functions

e Using Fourier series to solve the Diffusion Equation
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e For the Diffusion Equation, we found that to solve the problem

dc d?c c(L,t) =0 .

we have to add up eigenfunctions

c(xz,t) = bre’tsin(wix) + boe™?! sin(wax) + b3e?t sin(wsz) + - - -
and then figure out values for the b, by imposing the initial condition
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e Generalize inner product to functions:
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Fourler series

e Calculate the coefficients.

2T
fFS(JU) = % + aq COS —|— 9 COS (T) 3 T":(x\ 3
| | 'p |
—|_b1 SlIl —|— b2 S1n <2L) ,I _;‘ . ;
L J ‘f ; L
bn = )
(A) O —  for n odd,
h — nir
9 n
(B) N 0 for n even.
(C) 4(—1)” frs(z) = %Sin (%) —I—%Sin (37;6) +;i7rsin
n https://www.desmos.com/calculator/tivtikmiOy
ﬁ((D) 2(1 - (=1)") Does f(x) = frs(x) for all x?

N Problems at jumps! x=-1, 0, 1

5ﬂx>
22+
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Fourler series

e Theorem Suppose f anf f’ are piecewise continuous on [-L,L] and
periodic beyond that interval. Then f(x) = frs(x) at all points at which f is
continuous. Furthermore, at points of discontinuity, frs(x) takes the value
of the midpoint of the jump. That is,

Qﬁg@):f@ﬁ);f@‘)
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