
Today

• Homework 

• one WW problem to appear today

• more TBA from the textbook to be handed in at the start of the 
tutorial Monday April 7.

• Tutorial on Monday - worksheet instead of quiz.

• Orthogonality of sine and cosine functions

• Fourier series approximations to functions

• Using Fourier series to solve the Diffusion Equation
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Solving initial conditions using linear algebra

• To solve vector ODEs with ICs, we had to express the initial vector as a 
linear combination of the eigenvectors:
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Fourier series

• Theorem  Suppose f anf f’ are piecewise continuous on [-L,L] and 
periodic beyond that interval. Then f(x) = fFS(x) at all points at which f is 
continuous. Furthermore, at points of discontinuity, fFS(x) takes the value 
of the midpoint of the jump. That is,

fFS(x) =
f(x+) + f(x−)

2
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