Last name: Solution/marking key First name: \qquad Student \#: \qquad
Place a box around each answer so that it is clearly identified. Point values are approximate and may differ slightly in the final marking scheme.

1. [$\mathbf{3} \mathbf{~ p t s}$] Consider the equation $y^{\prime \prime}+6 y^{\prime}+k y=0$. Place (a), (b) and (c) in the boxes below to correctly complete the sentences.
(a) $k>9$
(b) $k=9$
(c) $k<9$

2. [$\mathbf{5} \mathbf{~ p t s}$] Find the solution to the equation $y^{\prime}=x / y$ subject to the initial condition $y(0)=-2$.

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y} \\
y y^{\prime} & =x \text { (1) } \\
\text { (1) } \frac{1}{2} y^{2} & =\frac{1}{2} x^{2}+c \\
y & = \pm \sqrt{x^{2}+2 C}
\end{aligned}
$$

$$
y(0)= \pm \sqrt{z c}=-2
$$

$$
\text { Use - and } c=2
$$

$$
y(t)=\frac{\pi}{x^{2}+4}
$$

3. [4 pts] Show that $\sin (t)$ and $\cos (t)$ are independent functions but that $\sin (t)$ and $\cos \left(t+\frac{\pi}{2}\right)$ are not independent. Recall that to show dependence, you must find constants C_{1} and C_{2} that make a linear combination of the functions zero.

$$
\begin{aligned}
& W(\sin t, \cos t)=\left|\begin{array}{ll}
\sin t^{(1)} & \cos t \\
\cos t & \sin t
\end{array}\right|=-\sin ^{2} t-\cos ^{2} t=-1 \neq 0 \\
& \text { therefore } \sin t \text { and cost are indep. } \\
& \sin t=-\cos \left(t+\frac{\pi}{2}\right) \text { so } C_{1} \sin t+c_{2} \cos \left(t+\frac{\pi}{2}\right)=0 \\
& \qquad \text { for } c_{1}=c_{2}=1
\end{aligned}
$$

Do not write in these boxes - for marking purposes only.

4. [4 pts] Find the general solution to the equation $t w^{\prime}-w=0$.

$$
\begin{aligned}
& w^{\prime}-\frac{1}{t} w=0 \\
& \mu=e^{-s} \frac{1}{t} d t=e^{-\ln t}=\frac{1}{t}(1) \\
& \frac{1}{t^{2}} w^{\prime}-\frac{1}{t^{2}} w=0
\end{aligned}
$$

$$
\begin{gathered}
\left(\frac{1}{t} w\right)^{\prime}=0 \\
\frac{1}{t} w=c \\
w=c t
\end{gathered}
$$

5. [6 pts] Use Reduction of Order to find a second solution to the equation $t^{2} y^{\prime \prime}-3 t y^{\prime}+3 y=0$ given that $y_{1}(t)=t$. Along the way, you should find yourself faced with the equation $t w^{\prime}-w=0$. You may refer to your answer to the previous problem at that point.

$$
\begin{aligned}
& y_{2}=v t(1) \\
& y_{2}^{\prime}=v^{\prime} t+v \\
& y_{2}^{\prime \prime}=v^{\prime \prime} t+2 v^{\prime} \\
& t^{2}\left(v^{\prime \prime} t+2 v^{\prime}\right)-3 t\left(v^{\prime} t+v\right)+3 v t=0 \\
& t^{3} v^{\prime \prime}-t^{2} v^{\prime}-3 y t+3 y t=0 \\
& (1) t v^{\prime \prime}-v^{\prime}=0 \quad \text { Let } w=v^{\prime} \\
& \text { (1) } t w^{\prime}-w=0 \\
& v^{\prime}=w=c t \quad \text { (see } \# 4 \text { above) } \\
& \text { (1) } v=c_{1} t^{2}+c_{2} \quad \text { or } y_{2}=t^{3} \text { (1) } \\
& y_{2}=c_{1} t^{3}+c_{2} t \text { or }
\end{aligned}
$$

Do not write in these boxes - for marking purposes only.
6. [$\mathbf{5} \mathbf{~ p t s}$] The equation for the motion of a mass spring system is $y^{\prime \prime}+3 y^{\prime}+2 y=f(t)$. For each $f(t)$ in the table below, give the form of the particular solution. The undetermined coefficients do not need to be calculated.

$f(t)$	$y_{p}(t)$
$e^{2 t}$	$A e^{2 t}$
$t e^{4 t}$	$(A t+B) e^{4 t}$
3	A
e^{-t}	$A t e^{-t}$
$t e^{-2 t}$	$t(A t+B) e^{-2 t}$

7. [$\mathbf{4} \mathbf{~ p t s] ~ B r i j ~ i s ~ d e v e l o p i n g ~ a ~ b i o r e m e d i a t i o n ~ p r o c e s s ~ t o ~ c l e a n ~ u p ~ s e w a g e ~ s p i l l s . ~ H e ~ s e t s ~ u p ~ a ~ t r i a l ~ e x p e r i m e n t ~}$ in the fountain on University Boulevard in which he pours sewage into the water at a rate of 30 litres per hour. The sewage contains bacteria at a concentration of 4 grams of bacteria per litre. Brij also adds a bacteria-eating algae to the water that can filter the water at a rate of 10 litres per hour, removing all bacteria from filtered water. The fountain initially holds 30000 litres of water. Write down a differential equation that describes the change in mass of bacteria in the fountain.

Do not write in these boxes - for marking purposes only.
6:

8. The differential equation $y^{\prime}+f(t) y=g(t)$ has the general solution $y(t)=(C-\cos (t)) / t$ where C is an arbitrary constant.
(a) $[\mathbf{1} \mathbf{p t}]$ What is the general solution to the equation $y^{\prime}+f(t) y=0$?

$$
y_{h}=\frac{c}{t}(1)
$$

(b) [2 pts] What is $f(t)$?

$$
\begin{aligned}
& y_{h}^{\prime}+f(t) y_{h}=0 \\
& -\frac{c}{t^{2}}+f(t) \frac{c}{t}=0 \\
& \frac{f(t)=\frac{1}{t} \quad \begin{array}{l}
\text { Other valid } \\
\text { methods ok }
\end{array}}{}
\end{aligned}
$$

(c) [2 pts] What is $g(t)$?

$$
\begin{aligned}
& y^{\prime}+\frac{1}{t} y=g(t) \quad \text { no easy points } \\
& t y^{\prime}+y=\operatorname{tg}(t) \\
& (t y)^{\prime}=\operatorname{tg}(t) \\
& t y=\int \operatorname{tg}(t) d t+c(1) \\
& y=\underbrace{\frac{1}{t} \operatorname{tg}(t) d t}_{-\frac{\cos t}{t}}+\frac{c}{t} \\
& \int \operatorname{tg}(t) d t=-\cos t \\
& \operatorname{tg}(t)=\sin t \\
& g(t)=\frac{1}{t} \sin t \text { Other valid } \\
& \text { Methods ok. }
\end{aligned}
$$

Do not write in these boxes - for marking purposes only. 8:
\square

Total: \square (out of 36)

