Today

- Step and ramp functions (continued)
- The Dirac Delta function and impulse force
- (Modeling with delta-function forcing)

Step function forcing

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 \\
y(0)=0, y^{\prime}(0)=0\end{cases}
\end{aligned}
$$

- The transformed equation is

$$
\begin{aligned}
& s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \\
& Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}=\left(e^{-2 s}-e^{-5 s}\right) H(s)
\end{aligned}
$$

- Recall that $\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-s c} F(s)$

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}
$$ $H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

- So we just need $\mathrm{h}(\mathrm{t})$ and we're done.

Step function forcing

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(\mathrm{~s})=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

Iculation (pdf and video): https://wiki.math.ubc.ca/mathbook/M256/Resources
$h(t)=\frac{1}{10}-\frac{1}{10} e^{-t} \cos (3 t)-\frac{1}{30} \cdot e^{-t} \sin 3 t$

Step function forcing

- An example with a ramped forcing function:

(l)

Two methods:

1. Build from left to right, adding/subtracting what you need to make the next section:

$$
g(t)=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10)
$$

2. Build each section independently:

$$
g(t)=\left(u_{5}(t)-u_{10}(t)\right) \frac{1}{5}(t-5)+u_{10}(t) \cdot 1
$$

$\omega(\mathrm{C}) g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 5$
(D) $g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 10$

Step function forcing

- An example with a ramped forcing function:

$$
\begin{aligned}
& \text { - An example with a ramped forcing function: } \\
& \begin{array}{l}
y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
y(0)=0, y^{\prime}(0)=0 \\
s^{2} Y+4 Y=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}} \\
Y(s)=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}\left(s^{2}+4\right)}=\frac{1}{5}\left(e^{-5 s}-e^{-10 s}\right) H(s) \\
y(t)=\frac{1}{5}\left[u_{5}(t) h(t-5)-u_{10}(t) h(t-10)\right]
\end{array}
\end{aligned}
$$

Find $\mathrm{h}(\mathrm{t})$ given that $H(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}$.

$$
h(t)=\frac{1}{4} t-\frac{1}{8} \sin (2 t)
$$

