
Today

• Reminder - midterm next week! Chapter 1.1-1.3, 2.1-2.4, 3 (not 3.6)

• Finish up undetermined coefficients

• Physics applications - mass springs

• Undamped, over/under/critically damped oscillations



Method of undetermined coefficients (3.5)

• Example 6. Find the general solution to                           .

• What is the form of the particular solution?

(A)  

(B)  

(C) 

(D) 

(E)  Don’t know / still thinking.

y�� − 4y = t3

yp(t) = At3

yp(t) = At3 + Bt2 + Ct + D

yp(t) = At3 + Bt2 + Ct

yp(t) = At3 + Bt2 + Ct + D + Ee2t + Fe−2t
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• Example 6. Find the general solution to                                        .

• What is the form of the particular solution?

(A)  

(B)  

(C) 

(D) 

(E)  Don’t know / still thinking.
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For each wrong answer, for what DE is it the correct form?

yp(t) = Ae2t + (Bt4 + Ct3 + Dt2 + Et)
yp(t) = Ae2t + t(Bt3 + Ct2 + Dt + E)
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y�� + 3y� − 10y = x2e−5x

yp(x) = Ax2e−5x
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Method of undetermined coefficients (3.5)

y�� + 3y� − 10y = x2e−5x

yp(x) = Ax2e−5x + Bxe−5x + Ce−5x

y�
p(x) involves x2, x, 1

y��
p (x) involves x2, x, 1

But           gets killed by the operator so C 

disappears - only 2 unknowns for matching.

e−5x

yp(x) = Ax3e−5x + Bx2e−5x + Cxe−5x

= x(Ax2e−5x + Bxe−5x + Ce−5x)

e−5xNeed 3 unknowns but not including          .
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Method of undetermined coefficients (3.5)

• Summary - finding a particular solution to L[y] = g(t).

• Include all functions that are part of the g(t) family (e.g. cos and sin)

• If part of the g(t) family is a solution to the homogeneous (h-)problem, 
use t x (g(t) family).

• If t x (part of the g(t) family), is a solution to the h-problem, use t2 x (g
(t) family). etc.

• For sums, group terms into families and include a term for each.

• For products of families, use the above rules and multiply them. 

• If your guess includes a solution to the h-problem, you may as well 
remove it as it won’t survive L[ ] so you won’t be able to determine its 
undetermined coefficient.
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Method of undetermined coefficients (3.5)

• Do lots of these problems and the trends will become clear.

• Two crucial facts to remember 

• If you try a form and you can make LHS=RHS with some choice 
for the coefficients then you’re done.

• If you can’t, your guess is most likely missing a term(s).
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Applications - vibrations (3.7)

Solid mechanics

F

x

e.g. tuning fork, bridges, buildings

x�� = −Kx

where K depends on the molecular details of 
the material and the cross-sectional geometry 
of the rod.
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Applications - vibrations (3.7)

• So far, no x’ term so no exponential decay in the solutions.

• Dashpot - mechanical element that adds friction.

- sometimes an abstraction that accounts for energy loss.

shock absorber

Kelvin-Voigt model
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Applications - forced vibrations (3.8)

• light hitting a molecular bond

• earthquake 
hitting a building

• pressure waves (sound) 
hitting a turning fork.
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Applications - vibrations (3.7)

• Undamped mass spring

mx�� + kx = 0

mr2 + k = 0

r = ±
�

k

m
i

x(t) = C1 cos(ω0t) + C2 sin(ω0t)

ω0 =
�

k

m
• increases with stiffness

• decreases with mass

• frequency
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sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

Trig identity reminders



Applications - vibrations (3.7)

2 cos(3t + π/3) =

2 cos(π/3) cos(3t)− 2 sin(π/3) sin(3t)

2 sin(π/3) cos(3t)− 2 sin(π/3) cos(3t)

2 sin(π/3) cos(3t) + 2 sin(π/3) cos(3t)

2 cos(π/3) cos(3t) + 2 sin(π/3) sin(3t)

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

Trig identity reminders

(A)  

(B)  

(C) 

(D) 

(E) Don’t know / still thinking.



Applications - vibrations (3.7)

2 cos(3t + π/3) =

2 cos(π/3) cos(3t)− 2 sin(π/3) sin(3t)
= cos(3t)−

√
3 sin(3t)

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

Trig identity reminders
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5
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= 5(cos(φ) cos(2t) + sin(φ) sin(2t))

= 5 cos(2t− φ)

• Example: 
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34
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φ
4

3 5

4 cos(2t) + 3 sin(2t)

= 5
�

4
5

cos(2t) +
3
5

sin(2t)
�

= 5(cos(φ) cos(2t) + sin(φ) sin(2t))

= 5 cos(2t− φ)

• Example: 

cos(A−B) = cos(A) cos(B) + sin(A) sin(B)
34

(cos(A), sin(A)) must lie on the unit circle. i.e. cos2(A)+sin2(A) = 1.
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• Converting from sum-of-sin-cos to a single cos expression:

φ = 0.9273

φ
4

3 5

4 cos(2t) + 3 sin(2t)

= 5
�

4
5

cos(2t) +
3
5

sin(2t)
�

= 5(cos(φ) cos(2t) + sin(φ) sin(2t))

= 5 cos(2t− φ)

• Example: 

cos(A−B) = cos(A) cos(B) + sin(A) sin(B)
34

(cos(A), sin(A)) must lie on the unit circle. i.e. cos2(A)+sin2(A) = 1.
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y(t) = C1 cos(ω0t) + C2 sin(ω0t)
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• Step 1 - Factor out                                  .

• Step 2 - Find the angle      for which 

A =
�

C2
1 + C2

2

φ cos(φ) =
C1�

C2
1 + C2

2

and                                           .sin(φ) =
C2�

C2
1 + C2

2

• Step 3 - Rewrite the solution as                                             .

• Converting from sum-of-sin-cos to a single cos expression:

y(t) = A cos(ω0t− φ)

y(t) = C1 cos(ω0t) + C2 sin(ω0t)
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• Damped mass-spring

mx�� + γx� + kx = 0
mr2 + γr + k = 0

=
γ

2m

�
−1±

�

1− 4km

γ2

�
⇒

m, γ, k > 0

smaller than 1 
or complex

negative or 
complexWe have the usual 

three cases...

r1,2 = − γ
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±
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• Damped oscillations

⇒ r1, r2 < 0, exponential decay only

r1=r2,  exp and t*exp decay⇒

⇒ r = α± βi

β =

�
4km

γ2
− 1 called pseudo-frequency

decaying oscillations

x(t) = eαt (C1 cos(βt) + C2 sin(βt))

r1,2 =
γ

2m

�
−1±

�

1− 4km

γ2

�

(i) 

(ii) 

(iii) 

⇒

https://www.desmos.com/
calculator/psy5r8hpln

For graphs, see:

(critically damped)

4km

γ2
< 1

4km

γ2
= 1

4km

γ2
> 1

(over damped -    large)γ

(under damped -    small)γ
α = − γ

2m
< 0

https://www.desmos.com/calculator/psy5r8hpln
https://www.desmos.com/calculator/psy5r8hpln
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