Today

e General solutions, independence of functions and the Wronskian
e Distinct roots of the characteristic equation
e Review of complex numbers

e Complex roots of the characteristic equation
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Homog. eq. with constant coeff. (Section 3.1)

e \Which of the following functions are also solutions?

A) y(O) = ys(t° Last class, we found that if y+(t)
¥ (B) y(t) = y1(t)+y2(t) IS a solution to
/" / -
(©) yt) = yi(t) yolt ay” + by +cy =0
then so is y(t) = C1y1(t).
(D) y(t) = y1(t) / ya(t)

e |n fact, the following are all solutions: Ciyi1(t), Coaya(t), Ciy1(t)+Cay2(t).

e \With first order equations, the arbitrary constant appeared through an
iIntegration step in our methods. With second order equations, not so lucky.

e Instead, find two solutions, yi(t), yo(t), by whatever method.

e The will be y(t) = Ciy1(t) + Coya(t).
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Homog. eq. with constant coeff. (Section 3.1)

e One case where the arbitrary constants DO appear as we calculate:
y// 4 y/ — 0
y +y = Ch
ety’ 4 ety — Oy ¢t
(e'y) = Cre’
ety = Cre’ + Cy
y = Cp + Coe™?

e More common would be that we find solutions y(t) = 1 and y(t)= etand simply
write down

y=Cp + Coe™ !
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Homog. eq. with constant coeff. (Section 3.1)

e So in general how do we find the two independent solutions y1 and y2?

e Exponential solutions seem to be common so let’'s assume y(t)=e" and see if
that gets us anything useful..

e Solve o -+ =0 by assuming y(t) = e" for some constant r.
Y Y

7,,267“75 L 7,67“75 — 0
r Lp = y = Cie’ + Coe™
r(r+1)=0 y=C1 + Coe™"
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Homog. eq. with constant coeff. (Section 3.1)

e Solve iy — 4y = 0 subjecttothelCs y(0) = 3,7'(0) =2 .

(A) y(t) = 0162t -+ 026_2t
% (B) y(t) = 2¢™ +e
a9
(C) y(t) = 1€ + 1€
D) y(t) = e* + 2
(E) y(t) — 0164t + 026_4t
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Homog. eq. with constant coeff. (Section 3.1)

e For the general case, ay’’ + by’ + cy = 0, by assuming (1) = e’

we get the characteristic equation:
ar® +br + ¢ =0
® There are three cases.
i. Two distinct real roots: b°- 4ac > 0. (r1#re)
ii.A repeated real root: b® - 4ac = 0.
iii. Two complex roots: b?- 4ac < 0.
’I“Qt

e For case i, we get 41 (1) = e and yo (t) =¢e

e Do our two solutions cover all possible ICs? That is, can we use them to
form a general solution?
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Independence and the Wronskian (Section 3.2)

e Example: Suppose ¥i(t) = and %2(t) = e*"? are two

solutions to some equation. Can we solve ANY initial
condition 4(0) = o, 7' (0) = vy with these two solutions?

2t—|—3

y(O) — 0163 —+ CQEB_B = Y0
y’(()) — 20163 —+ 2026_3 = Vo

e Solve this system for C4, Co...

e Cantdoit. Why? [ €° e "
2e3  2¢3
e e
det (26 90— ) 0
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Independence and the Wronskian (Section 3.2)

e For any two solutions to some linear ODE, to ensure that we have a
general solution, we need to check that

y1(0) 22(0)\ _ / R,
det (?/1 (O) yé (O)> — U1 (O)yQ(O) Y1 (O)yZ(O) 7é 0

e For ICs other than t0=0, we require that
y1(to)ya(to) — y1(to)y2(to) # O

e This quantity is called the Wronskian.

W (y1,y2)(t) = y1(t)ys(t) — vy (t)y2(t)
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Independence and the Wronskian (Section 3.2)

e Two functions y4(t) and y2(t) are linearly independent provided that the
only way that Ciyi(t) + Cay2(t) = O for all values of t is when C1=C2=0.

e.g. y1(t) = e*1% and y,(t) = e** ™ are not independent.

Find values of C1#0 and C2#0 so that Cy4(t) + Coy2(t) = 0.

A Cp=e 77 Oy = —e 42
B Cp=e 273 Oy = —e 277
C) Cp=e7, Cy=c¢"

WD Cp=e " Cy=—e

m
3
p—t

|
Q)
\.C)J
3

|

|
C.DI

V)
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Independence and the Wronskian (Section 3.2)

e Two functions y4(t) and y2(t) are linearly independent provided that the
only way that Ciyi(t) + Cay2(t) = O for all values of t is when C1=C2=0.

e.g. y1(t) = e*1% and y,(t) = e** ™ are not independent.

* The Wronskian is defined for any two functions, even if they aren’t
solutions to an ODE.

W (y1,y2)(t) = y1(t)y2(t) — y1 (H)y2(?)
e |[f the Wronskian is nonzero for some t, the functions are linearly

independent.

e |f y4(t) and y2(t) are solutions to an ODE and the Wronskian is nonzero
then they are independent and

y(t) = Cry1(t) + Caya(?)

is the general solution. We call y1(t) and y2(t) a fundamental set of solutions
and we can use them to solve any IC. 10
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Independence and the Wronskian (Section 3.2)

e So for case i (distinct roots), can we form a general solution from
y1(t) = €™ and ys(t) = e™"?

e Must check the Wronskian:
V"/'(€7“1t7 6T2t)<t) — 6T1t,,,267“2t L Tlerltergt

= (r1 —rg)e" e #£0

Soves! y(t) = C1e™" + Cye™" s the general solution.

11
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Independence and the Wronskian (Section 3.2)

e Example: Consider the equation y" + 9y = 0. Find the roots of the
characteristic equation (i.e. the r values).

(A)r1 =3, r2 =-3. As we’ll see soon, this means that
y1(t) = cos(3t) and y2(t)=sin(3t).

(B) r1 = 3 (repeated root).
Do these form a fundamental set of

{? (C)r1=3i,r 3 solutions? Calculate the Wronskian.
1= , 12 = ~Ol.

W (cos(3t),sin(3t))(t) =
(A) 0 (C) 3

(D)r1 = 9, (repeated root).

B) 1 (D) 2cos(3t) sin(3t)

12
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Distinct roots - asymptotic behaviour (Section 3.1)

e Three cases:

() Both r values positive. Except for the zero solution
t)=0, the limit lim y(%) ...
e.g. y(t) = Cre*" + Coe™ o t—>ooy( )

(i) Both r values negative. ¥ (A) ...is unbounded for all ICs.

e.g. Y(t) = Cie %t + Che ™t X (B)...is unbounded for most
|Cs but not for a few

(i) The r values have opposite sign. carefully chosen ones.

e.g. y(t) — 016—275 € 026515 ¥ (C) ...goes to zero for all ICs.

Challenge: come up with an initial condition

for (iii) that has a bounded solution. )
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Distinct roots - asymptotic behaviour (Section 3.1)

e Three cases:

() Both r values positive. Except for the zero solution
t)=0, the limit lim y(?)...
e.g. y(t) _ 016275 1+ 0265t y(t) t_)_ooy( )

(i) Both r values negative. w (A) ...is unbounded for all ICs.

e.d. y(t) — Cle_Qt + 026_5t ﬁ?(B) ...Is unbounded for most
|Cs but not for a few

(ili) The r values have opposite sign. carefully chosen ones.

e.g. y(t) — 016—275 e 0265t X (C) ...goes to zero for all ICs.

14
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Complex roots (Section 3.3)

e Complex number review (Euler’s formula)
e Complex roots of the characteristic equation

e From complex solutions to real solutions

15
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Complex number review

e We define a new number: 7 = v/ —1

e Before, we would get stuck solving any equation that required square-

rooting a negative number. No longer.
ee.g. Thesolutonsto 2 —dr +5=0ae z=2+iandx =2 —1

e For any equation, a:EQ + bx + ¢ = 0, when b? - 4ac < 0, the solutions

have the form © = o« &= 37 where a and B are both real numbers.

e For a+f3i, we call a the real part and 3 the imaginary part.

16
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Complex number review

e Adding two complex numbers:

(a4 bi) + (c+ di) = a+ c+ (b+ d)i

e Multiplying two complex numbers:

(a + bt)(c+ di) = ac — bd 4 (ad + bc)i

= T ——

e Dividing by a complex number:

(a+bi)/(c+di) = (a+ br) :

(c + di)

e \What is the inverse of c+di?

17
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Complex number review

e \What is the inverse of c+di written in the usual complex form p+qi?

. — di
A) ¢ — di c) &
(A) ﬁ?()cz—l—dQ
(B) c+ di (D) 1
c? + d? ¢ — di
c—di A +d*— (ed—de)i
(C—I—dZ)CQ_I_dQZ 02_|_d2 :1

e Dividing by a complex number:

, | L c—di ac+bd  (bc— ad)i
(a+bz)/(c+dz):(a+b2)62_|_d2 T 2142 21

18
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Complex number review

e Definitions:

e Conjugate - the conjugate of @ + b1 is

a-+bl=a— b0

e Magnitude - the magnitude of a + b1 is

la + bi| = \/a2+b2

19
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Complex number review

e Geometric interpretation of complex numbers

eeg. a-+ bt

a‘l‘b(

b

>

Re

a = M cos@
b= Msinb
M = /a2 + b2

b
¢ = arctan (—)
a

a4+ bt = M(cosf + isin )

0 is sometimes called the
argument or phase of a + bz.

20
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Complex number review

e Toward Euler’s formula

e Taylor series - recall that a function can be represented as

/ f//(xo) ,
f($):f(330)—|—f($0)($—$’()) | o) (x—xo) + ...
ZUB Q?%ﬂé 3’53
e What function has Taylor series 1 .CCB!I 112!5!} 3] R

W (A) cosx  W(C) e

W (B) sin x (D) In x

21
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Complex number review

e Use Taylor series to rewrite cos @ + ¢2sin 0.

. 6% 62 , 63  9°
cosf +isinf =1 SRR e 1 (9 TR >
. 6?2 63 2(94
2 =10+ g+ (Figr+ (217
—_— :/L
62 63 64
o . 9 . -3 ! L
=140+ ol -2 3] -1 A1 |
L, 02 (i0)°  (i0)T i0
=l oy ey e = e
. r3  x° 22
SINTX = X 3] | S cost = 1 o1 | i SR




Complex number review

e Use Taylor series to rewrite cos @ + ¢2sin 0.

cosf +1sinf

Euler’s formula:

10

23
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Complex number review

e Geometric interpretation of complex numbers

eeg. a+ bt a = M cos 0
b= Msin6

a b M= Va+¥

¢ = arctan (é>
b a

a+ bi = M(cosf + isin )

a4+ bi = Me'

QC (Polar form makes multiplication
much cleaner)

24
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