Today

- General solutions, independence of functions and the Wronskian
- Distinct roots of the characteristic equation
- Review of complex numbers
- Complex roots of the characteristic equation

Homog. eq. with constant coeff. (Section 3.1)

- Which of the following functions are also solutions?
(A) $y(t)=y_{1}(t)^{2}$

3
(B) $y(t)=y_{1}(t)+y_{2}(t)$
(C) $y(t)=y_{1}(t) y_{2}(t)$
(D) $y(t)=y_{1}(t) / y_{2}(t)$

Last class, we found that if $y_{1}(t)$ is a solution to

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

then so is $\mathrm{y}(\mathrm{t})=\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t})$.

- In fact, the following are all solutions: $\quad \mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t}), \quad \mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{t}), \quad \mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{t})$.
- With first order equations, the arbitrary constant appeared through an integration step in our methods. With second order equations, not so lucky.
- Instead, find two independent solutions, $\mathrm{y}_{1}(\mathrm{t}), \mathrm{y}_{2}(\mathrm{t})$, by whatever method.
- The general solution will be $\mathrm{y}(\mathrm{t})=\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{t})$.

Homog. eq. with constant coeff. (Section 3.1)

- One case where the arbitrary constants DO appear as we calculate:

$$
\begin{gathered}
y^{\prime \prime}+y^{\prime}=0 \\
y^{\prime}+y=C_{1} \\
e^{t} y^{\prime}+e^{t} y=C_{1} e^{t} \\
\left(e^{t} y\right)^{\prime}=C_{1} e^{t} \\
e^{t} y=C_{1} e^{t}+C_{2} \\
y=C_{1}+C_{2} e^{-t}
\end{gathered}
$$

- More common would be that we find solutions $\mathrm{y}(\mathrm{t})=1$ and $\mathrm{y}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}}$ and simply write down

$$
y=C_{1}+C_{2} e^{-t}
$$

Homog. eq. with constant coeff. (Section 3.1)

- So in general how do we find the two independent solutions y_{1} and y_{2} ?
- Exponential solutions seem to be common so let's assume $y(t)=e^{\text {rt }}$ and see if that gets us anything useful..
- Solve $y^{\prime \prime}+y^{\prime}=0$ by assuming $y(t)=e^{r t}$ for some constant r.

$$
\begin{array}{cc}
\left(e^{r t}\right)^{\prime \prime}+\left(e^{r t}\right)^{\prime}=0 & \\
r^{2} e^{r t}+r e^{r t}=0 & y=C_{1} e^{0}+C_{2} e^{-t} \\
r^{2}+r=0 & y=C_{1}+C_{2} e^{-t} \\
r(r+1)=0 &
\end{array}
$$

Homog. eq. with constant coeff. (Section 3.1)

- Solve $y^{\prime \prime}-4 y=0$ subject to the ICs $y(0)=3, y^{\prime}(0)=2$.
(A) $y(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}$
(B) $y(t)=2 e^{2 t}+e^{-2 t}$
(C) $y(t)=\frac{7}{4} e^{4 t}+\frac{5}{4} e^{-4 t}$
(D) $y(t)=e^{2 t}+2 e^{-2 t}$
(E) $y(t)=C_{1} e^{4 t}+C_{2} e^{-4 t}$

Homog. eq. with constant coeff. (Section 3.1)

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
i. Two distinct real roots: $b^{2}-4 a c>0 .\left(r_{1} \neq r_{2}\right)$
ii.A repeated real root: $b^{2}-4 a c=0$.
iii. Two complex roots: $\mathrm{b}^{2}-4 \mathrm{ac}<0$.
- For case i, we get $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2} t}$.
- Do our two solutions cover all possible ICs? That is, can we use them to form a general solution?

Independence and the Wronskian (Section 3.2)

- Example: Suppose $y_{1}(t)=e^{2 t+3}$ and $y_{2}(t)=e^{2 t-3}$ are two solutions to some equation. Can we solve ANY initial condition $y(0)=y_{0}, y^{\prime}(0)=v_{0}$ with these two solutions?

$$
\begin{gathered}
y(t)=C_{1} e^{2 t+3}+C_{2} e^{2 t-3} \\
y(0)=C_{1} e^{3}+C_{2} e^{-3}=y_{0} \\
y^{\prime}(0)=2 C_{1} e^{3}+2 C_{2} e^{-3}=v_{0}
\end{gathered}
$$

- Solve this system for $\mathrm{C}_{1}, \mathrm{C}_{2} \ldots$
- Can't do it. Why? $\left(\begin{array}{cc}e^{3} & e^{-3} \\ 2 e^{3} & 2 e^{-3}\end{array}\right)\binom{C_{1}}{C_{2}}=\binom{y_{0}}{v_{0}}$

$$
\operatorname{det}\left(\begin{array}{cc}
e^{3} & e^{-3} \\
2 e^{3} & 2 e^{-3}
\end{array}\right)=0
$$

Independence and the Wronskian (Section 3.2)

- For any two solutions to some linear ODE, to ensure that we have a general solution, we need to check that

$$
\operatorname{det}\left(\begin{array}{ll}
y_{1}(0) & y_{2}(0) \\
y_{1}^{\prime}(0) & y_{2}^{\prime}(0)
\end{array}\right)=y_{1}(0) y_{2}^{\prime}(0)-y_{1}^{\prime}(0) y_{2}(0) \neq 0
$$

- For ICs other than $\mathrm{t}_{0}=0$, we require that

$$
y_{1}\left(t_{0}\right) y_{2}^{\prime}\left(t_{0}\right)-y_{1}^{\prime}\left(t_{0}\right) y_{2}\left(t_{0}\right) \neq 0
$$

- This quantity is called the Wronskian.

$$
W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

Independence and the Wronskian (Section 3.2)

- Two functions $y_{1}(t)$ and $y_{2}(t)$ are linearly independent provided that the only way that $\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{t})=0$ for all values of t is when $\mathrm{C}_{1}=\mathrm{C}_{2}=0$.
e.g. $y_{1}(t)=e^{2 t+3}$ and $y_{2}(t)=e^{2 t-3}$ are not independent.

Find values of $\mathrm{C}_{1} \neq 0$ and $\mathrm{C}_{2} \neq 0$ so that $\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{t})=0$.

> (A) $C_{1}=e^{-2 t-3}, C_{2}=-e^{-2 t+3}$
> (B) $C_{1}=e^{-2 t+3}, C_{2}=-e^{-2 t-3}$
> (C) $C_{1}=e^{-3}, C_{2}=e^{3}$
> (D) $C_{1}=e^{-3}, C_{2}=-e^{3}$
> (E) $C_{1}=e^{3}, C_{2}=-e^{-3}$

Independence and the Wronskian (Section 3.2)

- Two functions $y_{1}(t)$ and $y_{2}(t)$ are linearly independent provided that the only way that $\mathrm{C}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{C}_{2} \mathrm{y}_{2}(\mathrm{t})=0$ for all values of t is when $\mathrm{C}_{1}=\mathrm{C}_{2}=0$.

$$
\text { e.g. } y_{1}(t)=e^{2 t+3} \text { and } y_{2}(t)=e^{2 t-3} \text { are not independent. }
$$

- The Wronskian is defined for any two functions, even if they aren't solutions to an ODE.

$$
W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)
$$

- If the Wronskian is nonzero for some t, the functions are linearly independent.
- If $y_{1}(t)$ and $y_{2}(t)$ are solutions to an ODE and the Wronskian is nonzero then they are independent and

$$
y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)
$$

is the general solution. We call $\mathrm{y}_{1}(\mathrm{t})$ and $\mathrm{y}_{2}(\mathrm{t})$ a fundamental set of solutions and we can use them to solve any IC.

Independence and the Wronskian (Section 3.2)

- So for case i (distinct roots), can we form a general solution from

$$
y_{1}(t)=e^{r_{1} t} \quad \text { and } \quad y_{2}(t)=e^{r_{2} t} ?
$$

- Must check the Wronskian:

$$
\begin{aligned}
W\left(e^{r_{1} t}, e^{r_{2} t}\right)(t) & =e^{r_{1} t} r_{2} e^{r_{2} t}-r_{1} e^{r_{1} t} e^{r_{2} t} \\
& =\left(r_{1}-r_{2}\right) e^{r_{1} t} e^{r_{2} t} \neq 0
\end{aligned}
$$

So yes! $y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}$ is the general solution.

Independence and the Wronskian (Section 3.2)

- Example: Consider the equation $y^{\prime \prime}+9 y=0$. Find the roots of the characteristic equation (i.e. the r values).
(A) $r_{1}=3, r_{2}=-3$.

As we'll see soon, this means that $y_{1}(\mathrm{t})=\cos (3 \mathrm{t})$ and $\mathrm{y}_{2}(\mathrm{t})=\sin (3 \mathrm{t})$.
(B) $r_{1}=3$ (repeated root).
(C) $r_{1}=3 i, r_{2}=-3 i$.

Do these form a fundamental set of solutions? Calculate the Wronskian.
(D) $r_{1}=9$, (repeated root).
$W(\cos (3 t), \sin (3 t))(t)=$
(A) $0 \quad \hat{\imath}(\mathrm{C}) 3$
(B) 1
(D) $2 \cos (3 t) \sin (3 t)$

Distinct roots - asymptotic behaviour (Section 3.1)

- Three cases:
(i) Both r values positive.

$$
\text { e.g. } y(t)=C_{1} e^{2 t}+C_{2} e^{5 t}
$$

(ii) Both r values negative.
e.g. $y(t)=C_{1} e^{-2 t}+C_{2} e^{-5 t}$
(iii) The r values have opposite sign.
e.g. $y(t)=C_{1} e^{-2 t}+C_{2} e^{5 t}$

Except for the zero solution $\mathrm{y}(\mathrm{t})=0$, the limit $\lim _{t \rightarrow \infty} y(t) \ldots$
(A) ...is unbounded for all ICs.

B (B) ...is unbounded for most ICs but not for a few carefully chosen ones.
τ (C) ...goes to zero for all ICs.

Challenge: come up with an initial condition for (iii) that has a bounded solution.

Distinct roots - asymptotic behaviour (Section 3.1)

- Three cases:
(i) Both r values positive.

$$
\text { e.g. } y(t)=C_{1} e^{2 t}+C_{2} e^{5 t}
$$

(ii) Both r values negative.

$$
\text { e.g. } y(t)=C_{1} e^{-2 t}+C_{2} e^{-5 t}
$$

(iii) The r values have opposite sign.
e.g. $y(t)=C_{1} e^{-2 t}+C_{2} e^{5 t}$

Except for the zero solution $\mathrm{y}(\mathrm{t})=0$, the limit $\lim _{t \rightarrow-\infty} y(t) \ldots$
$\tau(A)$...is unbounded for all ICs.
(B) ...is unbounded for most ICs but not for a few carefully chosen ones.
$\vartheta(C)$...goes to zero for all ICs.

Complex roots (Section 3.3)

- Complex number review (Euler's formula)
- Complex roots of the characteristic equation
- From complex solutions to real solutions

Complex number review

- We define a new number: $i=\sqrt{-1}$
- Before, we would get stuck solving any equation that required squarerooting a negative number. No longer.
- e.g. The solutions to $x^{2}-4 x+5=0$ are $x=2+i$ and $x=2-i$
- For any equation, $a x^{2}+b x+c=0$, when $\mathrm{b}^{2}-4 \mathrm{ac}<0$, the solutions have the form $x=\alpha \pm \beta i$ where a and β are both real numbers.
- For $\alpha+\beta i$, we call a the real part and β the imaginary part.

Complex number review

- Adding two complex numbers:

$$
(a+b i)+(c+d i)=a+c+(b+d) i
$$

- Multiplying two complex numbers:

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

- Dividing by a complex number:

$$
(a+b i) /(c+d i)=(a+b i) \frac{1}{(c+d i)}
$$

- What is the inverse of $\mathrm{c}+\mathrm{di}$?

Complex number review

- What is the inverse of $c+d i$ written in the usual complex form $p+q i$?

$$
\begin{array}{cc}
\begin{array}{cc}
\text { (A) } c-d i & \hat{\omega}(\mathrm{C}) \frac{c-d i}{c^{2}+d^{2}} \\
\begin{array}{ll}
\text { (B) } \frac{c+d i}{c^{2}+d^{2}} & \text { (D) } \frac{1}{c-d i} \\
(c+d i) \frac{c-d i}{c^{2}+d^{2}}=\frac{c^{2}+d^{2}-(c d-d c) i}{c^{2}+d^{2}}=1
\end{array}
\end{array}=\begin{array}{l}
\text { (D) }
\end{array}
\end{array}
$$

- Dividing by a complex number:

$$
(a+b i) /(c+d i)=(a+b i) \frac{c-d i}{c^{2}+d^{2}}=\frac{a c+b d}{c^{2}+d^{2}}+\frac{(b c-a d) i}{c^{2}+d^{2}}
$$

Complex number review

- Definitions:
- Conjugate - the conjugate of $a+b i$ is

$$
\overline{a+b i}=a-b i
$$

- Magnitude - the magnitude of $a+b i$ is

$$
|a+b i|=\sqrt{a^{2}+b^{2}}
$$

Complex number review

- Geometric interpretation of complex numbers
- e.g. $a+b i$
b

$$
\begin{aligned}
& a=M \cos \theta \\
& b=M \sin \theta
\end{aligned}
$$

$$
M=\sqrt{a^{2}+b^{2}}
$$

$$
\theta=\arctan \left(\frac{b}{a}\right)
$$

$$
a+b i=M(\cos \theta+i \sin \theta)
$$

θ is sometimes called the argument or phase of $a+b i$.

Complex number review

- Toward Euler's formula
- Taylor series - recall that a function can be represented as

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots
$$

- What function has Taylor series $x+\underset{x!}{x^{2}}+\frac{x^{2} \boldsymbol{x}^{\Phi}}{2!4!}+\frac{x^{3}}{3!} \cdot+\cdots$
$\hat{\omega}(\mathrm{A}) \cos \mathrm{x} \quad \hat{\omega}(\mathrm{C}) \mathrm{e}^{\mathrm{x}}$
$\omega(B) \sin x \quad$ (D) $\ln x$

Complex number review

- Use Taylor series to rewrite $\cos \theta+i \sin \theta$.

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \quad \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots
$$

$$
\begin{aligned}
& \underline{\cos \theta}+i \underline{\sin \theta}=\underline{1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\cdots+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)} \\
& \begin{array}{l}
=1+i \theta+\frac{(-1) \frac{\theta^{2}}{2!}}{}=\frac{(-1) i \frac{\theta^{3}}{3!}+(-1)^{2} \frac{\theta^{4}}{4!}}{2!}+\cdots \\
=1+i \theta+i^{2} \frac{\theta^{2}}{2!}+i^{3} \frac{\theta^{3}}{3!}+i^{4} \frac{\theta^{4}}{4!}+\cdots
\end{array} \\
& =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\cdots=e^{i \theta}
\end{aligned}
$$

Complex number review

- Use Taylor series to rewrite $\cos \theta+i \sin \theta$. $\cos \theta+i \sin \theta$

Euler's formula:

Complex number review

- Geometric interpretation of complex numbers
- e.g. $a+b i$

$$
\begin{aligned}
& a=M \cos \theta \\
& b=M \sin \theta
\end{aligned}
$$

$$
M=\sqrt{a^{2}+b^{2}}
$$

$$
\theta=\arctan \left(\frac{b}{a}\right)
$$

$$
a+b i=M(\cos \theta+i \sin \theta)
$$

$$
a+b i=M e^{i \theta}
$$

(Polar form makes multiplication much cleaner)

