
Today

• Diffusion equation examples and summary

• End-of-term info:

• Don’t forget to complete the online teaching evaluation survey.

• Next Thursday, two-stage review (optionally for 2/50 exam points).

• Office hours during exams TBA but sometime Apr 15/16/27.
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• How would you solve this one?
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• Adding the linear function to the usual solution to the Dirichlet problem ensures that the 
BCs are satisfied without changing the fact that it satisfies the PDE. 
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Review of solutions to the Diffusion Equation

• Diffusion equation with 

• Homogeneous

• Pure Dirichlet BCs (u=0) --> use sin( nπx / L).

• Pure Neumann BCs (ux=0) --> use cos( nπx / L).

• Mixed Dirichlet/Neumann --> use sin( nπx / 2L).

• Mixed Neumann/Dirichlet --> use cos( nπx / 2L).

• Nonhomogeneous

• Find steady state, subtract from f(x), find FS as above, add back 
steady state.


