Today

- Neumann BC example
- Summary of steps for solving the Diffusion Equation with homogeneous Dirichlet or Neumann BCs using Fourier Series.
- Nonhomogeneous BCs
- Eigenvalue / eigenvector interpretation
- End-of-term info:
- Don't forget to complete the online teaching evaluation survey.
- Review and office hours during exams TBA - by online poll

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case? $\quad C_{s s}(x)=A x+B$
$\int^{L} \quad \mathrm{BC}$ says $\mathrm{A}=0 . \mathrm{B}=$?
Total initial mass $=\int_{0}^{L} c(x, 0) d x$ No flux BCs so these
Total "final" mass $\left.=\int_{0}^{L} c_{s s}(x) d x\right\} \begin{aligned} & \text { No flux BCs so } \\ & \text { must be equal. }\end{aligned}$
In this case, the Fourier series also tells us the answer:
$c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right) \longrightarrow \mathrm{c}_{\mathrm{ss}}(\mathrm{X})=\mathrm{a}_{0} / 2$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right)
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
\begin{gathered}
c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right) \\
c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)=x
\end{gathered}
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
\begin{gathered}
c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right) \\
c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)=x
\end{gathered}
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
\begin{aligned}
& a_{0}=2 \\
& a_{n}=\frac{4}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \\
& f(x)=1+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\left((-1)^{n}-1\right)}{n^{2}} \cos \frac{n \pi x}{2} \\
& c(x, t)=1+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\left((-1)^{n}-1\right)}{n^{2}} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \frac{n \pi x}{2}
\end{aligned}
$$

Solving the Diffusion equation using FS - summary

- The Diffusion equation ties the time-exponent to the space-frequency:

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

Solving the Diffusion equation using FS - summary

- The Diffusion equation ties the time-exponent to the space-frequency:

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

- Boundary conditions whether you need a Fourier sine or cosine series and determines the frequency ω.

$$
\begin{aligned}
& c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right) \\
& \frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0 \Rightarrow d_{n}(x, t)=a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Solving the Diffusion equation using FS - summary

- The Diffusion equation ties the time-exponent to the space-frequency:

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

- Boundary conditions whether you need a Fourier sine or cosine series and determines the frequency ω.

$$
\begin{aligned}
& c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right) \\
& \frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0 \Rightarrow d_{n}(x, t)=a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

- The initial condition determines the a_{n} or b_{n} values via Fourier series.

$$
c(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x) \quad \text { or } \quad c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)=f(x)
$$

Solving the Diffusion equation using FS - summary

- The Diffusion equation ties the time-exponent to the space-frequency:

- The initial condition determines the a_{n} or b_{n} values via Fourier series.

$$
c(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x) \quad \text { or } \quad c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)=f(x)
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \quad \text { Write down the solution to this IVP. } \\
& u(x, 0)=\sin \frac{3 \pi x}{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$u_{t}=4 u_{x x}$
$\left.\frac{d u}{d x}\right|_{x=0,2}=0$
Write down the solution to this IVP.
$u(x, 0)=\sin \frac{3 \pi x}{2}$
(A) $u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}$
(B) $u(x, t)=e^{-9 \pi^{2} t} \sin \frac{3 \pi x}{2}$
(C) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$
$b_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \sin \frac{n \pi x}{2} d x$
(D) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}$
$a_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \cos \frac{n \pi x}{2} d x$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0
\end{aligned}
$$

Write down the solution to this IVP.
$u(x, 0)=\sin \frac{3 \pi x}{2}$
(A) $u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}$
(B) $u(x, t)=e^{-9 \pi^{2} t} \sin \frac{3 \pi x}{2}$
(C) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \sin \frac{n \pi x}{2} d x
$$

$\hat{\psi}(\mathrm{D}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}$
$a_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \cos \frac{n \pi x}{2} d x$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0
\end{aligned}
$$

Write down the solution to this IVP.
$u(x, 0)=\sin \frac{3 \pi x}{2}$
(A) $u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}$
\longleftarrow doesn't satisfy IC.
(B) $u(x, t)=e^{-9 \pi^{2} t} \sin \frac{3 \pi x}{2}$
(C) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \sin \frac{n \pi x}{2} d x
$$

$\hat{\psi}(\mathrm{D}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}$
$a_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \cos \frac{n \pi x}{2} d x$

Using Fourier Series to solve the Diffusion Equation

$$
u_{t}=4 u_{x x}
$$

$$
\left.\frac{d u}{d x}\right|_{x=0,2}=0
$$

Write down the solution to this IVP.
$u(x, 0)=\sin \frac{3 \pi x}{2}$
(A) $u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}$
\longleftarrow doesn't satisfy IC.
(B) $u(x, t)=e^{-9 \pi^{2} t} \sin \frac{3 \pi x}{2}$
\longleftarrow don't satisfy BCs.
(C) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \sin \frac{n \pi x}{2} d x
$$

$\leadsto(\mathrm{D}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}$
$a_{n}=\int_{0}^{2} \sin \frac{3 \pi x}{2} \cos \frac{n \pi x}{2} d x$
...with nonhomogeneous boundary conditions

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=0 \\
& u(2, t)=4 \\
& u(x, 0)=x^{2}
\end{aligned}
$$

...with nonhomogeneous boundary conditions

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=0 \\
& u(2, t)=4 \\
& u(x, 0)=x^{2}
\end{aligned}
$$

\longrightarrow Nonhomogeneous BCs

...with nonhomogeneous boundary conditions

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=0 \\
& u(2, t)=4 \\
& u(x, 0)=x^{2}
\end{aligned}
$$

\longrightarrow Nonhomogeneous BCs

Still use $\sin (n \pi x / L)$ but need to get end(s) away from zero! What is steady state?

...with nonhomogeneous boundary conditions

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=0 \\
& u(2, t)=4 \\
& u(x, 0)=x^{2}
\end{aligned}
$$

\longrightarrow Nonhomogeneous BCs

Still use $\sin (n \pi x / L)$ but need to get end(s) away from zero! What is steady state? $\quad u_{s s}(x)=2 x$

...with nonhomogeneous boundary conditions

$u_{t}=D u_{x x}$
$u(0, t)=0$
$u(2, t)=4$
\longrightarrow Nonhomogeneous BCs
$u(x, 0)=x^{2}$
Still use $\sin (n \pi x / L)$ but need to get end(s) away from zero!
What is steady state? $u_{s s}(x)=2 x$
Ultimately, we want $u(x, t)=2 x+\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} D t / L^{2}} \sin \frac{n \pi x}{L}$
...with nonhomogeneous boundary conditions
$u_{t}=D u_{x x}$
$u(0, t)=0$
$u(2, t)=4$
$u(x, 0)=x^{2}$
\longrightarrow Nonhomogeneous BCs

Still use $\sin (n \pi x / L)$ but need to get end(s) away from zero!
What is steady state? $\mathrm{u}_{\mathrm{ss}}(\mathrm{x})=2 \mathrm{x}$
Ultimately, we want $u(x, t)=2 x+\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} D t / L^{2}} \sin \frac{n \pi x}{L}$
What function do we use to calculate the Fourier series $\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$?
(A) x^{2}
(B) $x^{2}-2$
(C) $x^{2}-2 x$
(D) $x^{2}+2 x$
...with nonhomogeneous boundary conditions
$u_{t}=D u_{x x}$
$u(0, t)=0$
$u(2, t)=4$
$u(x, 0)=x^{2}$
\longrightarrow Nonhomogeneous BCs

Still use $\sin (n \pi x / L)$ but need to get end(s) away from zero!
What is steady state? $\mathrm{u}_{\mathrm{ss}}(\mathrm{x})=2 \mathrm{x}$
Ultimately, we want $u(x, t)=2 x+\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} D t / L^{2}} \sin \frac{n \pi x}{L}$
What function do we use to calculate the Fourier series $\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}$?
(A) x^{2}
(B) $x^{2}-2$
(C) $x^{2}-2 x$
(D) $x^{2}+2 x$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=a \\
& u(L, t)=b \\
& u(x, 0)=f(x)
\end{aligned}
$$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=a \\
& u(L, t)=b \\
& u(x, 0)=f(x)
\end{aligned}
$$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=a \\
& u(L, t)=b \\
& u(x, 0)=f(x)
\end{aligned}
$$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=a \\
& u(L, t)=b \\
& u(x, 0)=f(x)
\end{aligned}
$$

- Recall - rate of change is proportional to concavity so bumps get ironed out.

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=a \\
& u(L, t)=b \\
& u(x, 0)=f(x)
\end{aligned}
$$

- Recall - rate of change is proportional to concavity so bumps get ironed out.

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{array}{lr}
u_{t}=D u_{x x} & \\
u(0, t)=a & \text { - Recall - rate of } \\
u(L, t)=b & \text { proportional to } \\
u(x, 0)=f(x) & \\
v(x, t)=u(x, t)-\left(a+\frac{b-a}{L} x\right)
\end{array}
$$

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BC:

$$
\begin{aligned}
& \begin{array}{l}
u_{t}=D u_{x x} \\
u(0, t)=a
\end{array} \\
& \begin{array}{ll}
u(L, t)=b & \text { Recall - rate of } c \\
u(x, 0)=f(x) & \text { proportional to } \\
\text { bumps get irone }
\end{array} \\
& v(x, t)=u(x, t)-\left(a+\frac{b-a}{L} x\right) \\
& \left.\begin{array}{l}
v_{t}=u_{t} \\
v_{x x}=u_{x x}
\end{array}\right\} \Rightarrow v_{t}=D v_{x x} \\
& v(0, t)=u(0, t)-a=0 \\
& v(L, t)=u(L, t)-b=0 \\
& v(x, 0)=u(x, 0)-\left(a+\frac{b-a}{L} x\right)
\end{aligned}
$$

Recall - rate of change is
proportional to concavity so bumps get ironed out.

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& \begin{array}{l}
u_{t}=D u_{x x} \\
u(0, t)=a
\end{array} \\
& \begin{array}{ll}
u(L, t)=b & \text { Recall - rate of } c \\
u(x, 0)=f(x) & \text { proportional to } \\
\text { bumps get irone }
\end{array} \\
& v(x, t)=u(x, t)-\left(a+\frac{b-a}{L} x\right) \\
& \left.\begin{array}{l}
v_{t}=u_{t} \\
v_{x x}=u_{x x}
\end{array}\right\} \Rightarrow v_{t}=D v_{x x} \\
& v(0, t)=u(0, t)-a=0 \\
& v(L, t)=u(L, t)-b=0 \\
& v(x, 0)=u(x, 0)-\left(a+\frac{b-a}{L} x\right)
\end{aligned}
$$

- $\mathrm{v}(\mathrm{x}, \mathrm{t})$ satisfies the Diffusion Eq with homogeneous Dirichlet BCs and a new IC.

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& \begin{array}{l}
u_{t}=D u_{x x} \\
u(0, t)=a \\
u(L, t)=b
\end{array} \\
& \begin{array}{l}
\text { - Recall - rate of } c \\
u(x, 0)=f(x) \\
\text { proportional to } \\
\text { bumps get irone }
\end{array} \\
& \begin{array}{l}
v(x, t)=u(x, t)-\left(a+\frac{b-a}{L} x\right) \\
\left.\begin{array}{l}
v_{t}=u_{t} \\
v_{x x}=u_{x x}
\end{array}\right\} \Rightarrow v_{t}=D v_{x x} \\
v(0, t)=u(0, t)-a=0 \\
v(L, t)=u(L, t)-b=0 \\
v(x, 0)=u(x, 0)-\left(a+\frac{b-a}{L} x\right)
\end{array}
\end{aligned}
$$

- $\mathrm{v}(\mathrm{x}, \mathrm{t})$ satisfies the Diffusion Eq with homogeneous Dirichlet BCs and a new IC.
- General trick: define v=u-SS and find v as before.

...with nonhomogeneous boundary conditions

- Solve the Diffusion Equation with nonhomogeneous BCs:

$$
\begin{aligned}
& u_{t}=D u_{x x} \\
& u(0, t)=a \\
& u(L, t)=b \\
& u(x, 0)=f(x) \\
& v(x, t)=u(x, t)-\left(a+\frac{b-a}{L} x\right) \\
& \left.\begin{array}{l}
v_{t}=u_{t} \\
v_{x x}=u_{x x}
\end{array}\right\} \Rightarrow v_{t}=D v_{x x} \\
& v(0, t)=u(0, t)-a=0 \\
& v(L, t)=u(L, t)-b=0 \\
& v(x, 0)=u(x, 0)-\left(a+\frac{b-a}{L} x\right)
\end{aligned}
$$

- $\mathrm{v}(\mathrm{x}, \mathrm{t})$ satisfies the Diffusion Eq with homogeneous Dirichlet BCs and a new IC.
- General trick: define v=u-SS and find v as before.

