Difference between revisions of "Tutorial Week 11"
(Created page with "===Worksheet Questions=== 1. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$...") |
(→Worksheet Questions) |
||
Line 1: | Line 1: | ||
===Worksheet Questions=== | ===Worksheet Questions=== | ||
+ | You can print the [[Media:Tutorial11.pdf|PDF]]. | ||
+ | |||
1. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$. | 1. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$. | ||
\begin{equation} | \begin{equation} |
Revision as of 13:03, 24 March 2017
Worksheet Questions
You can print the PDF.
1. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$. \begin{equation} \left\{ \begin{array}{lr} u_{t} = 4u_{xx}\\ u(0,t) = 0\\ u(2,t) = 0 \end{array} \right. \end{equation} 2. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x+1$ for $0\leq x \leq 2$. \begin{equation} \left\{ \begin{array}{lr} u_{t} = 4u_{xx}\\ u(0,t) = 1\\ u(2,t) = 5 \end{array} \right. \end{equation} 3. What family of trig function should you use in order to solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$? Specify the function, $\sin(\omega x)$ or $\cos(\omega x)$, and the spatial frequencies $\omega$ as a function of an integer $n$. \begin{equation} \left\{ \begin{array}{lr} u_{t} = 4u_{xx}\\ u(0,t) = 0\\ u_{x}(2,t) = 0 \end{array} \right. \end{equation}