Difference between revisions of "Tutorial Week 11"

From UBCMATH WIKI
Jump to: navigation, search
 
Line 33: Line 33:
 
\end{equation}
 
\end{equation}
  
===Solutions===
 
  
1. Using the boundary conditions, we get a solution that looks like
+
[[Tutorial Week 11 Solutions]]
$$u(x,t) =\sum\limits_{n=1}^\infty B_n\sin\left(\frac{n\pi x}{2}\right)e^{-n^2\pi^2t}$$['''1 pt''' for form].
+
Using the initial condition we can find $B_n$
+
$$B_n = \frac{1}{2}\int_{-2}^{2}x\sin\left(\dfrac{n\pi x}{2}\right)dx=\int_{0}^{2}x\sin\left(\dfrac{n\pi x}{2}\right)dx$$['''1 pt''' for coefficient integral].
+
Solving, we get
+
\begin{equation}
+
  B_n = (-1)^{n+1}\dfrac{4}{n \pi}
+
\end{equation}['''1 pt''' for coefficient value].
+
 
+
2. $u(x,t)$ has steady state solution $s(x)=1+2x$ ['''1 pt'''].
+
Defining $w(x,t)=u(x,t)-s(x)$:
+
\begin{equation}
+
  \left\{
+
    \begin{array}{lr}
+
      w_{t} = 4w_{xx}\\
+
      w(0,t) = 0\\
+
      w(2,t) = 0\\
+
      w(x,0)=-x,
+
    \end{array}
+
  \right.
+
\end{equation} ['''1 pt''' for initial condition].
+
which from question 1 has solution:
+
$$w(x,t) =\sum\limits_{n=1}^\infty B_n\sin\left(\frac{n\pi x}{2}\right)e^{-n^2\pi^2t},$$
+
where
+
\begin{equation}
+
B_n =- (-1)^{n+1}\dfrac{4}{n \pi}=(-1)^{n}\dfrac{4}{n \pi}
+
\end{equation} ['''1 pt''' for correctly calculating $w$].
+
Thus,
+
$$u(x,t) =1+2x+\sum\limits_{n=1}^\infty (-1)^{n}\dfrac{4}{n \pi}\sin\left(\frac{n\pi x}{2}\right)e^{-n^2\pi^2t}$$ ['''1 pt''' for putting it all together].
+
 
+
 
+
3.  To satisfy the boundary condition $u(0,t)=0$, the trig function is of the form $\sin(\omega x)$ ['''1 pt'''].  To satisfy the boundary condition $u_{x}(2,t) = 0$, $\cos(2\omega)=0$.  Thus, $2\omega=\frac{\pi}{2}+(n-1)\pi$ for $n=1,2,\dots$ ['''1 pt'''].  Equivalently, $\omega=\frac{(2n-1)\pi}{4}$ for $n=1,2,\dots$.
+

Latest revision as of 23:09, 30 December 2020

Worksheet Questions

You can print the PDF.

1. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$. \begin{equation} \left\{ \begin{array}{lr} u_{t} = 4u_{xx}\\ u(0,t) = 0\\ u(2,t) = 0 \end{array} \right. \end{equation} 2. Solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x+1$ for $0\leq x \leq 2$. \begin{equation} \left\{ \begin{array}{lr} u_{t} = 4u_{xx}\\ u(0,t) = 1\\ u(2,t) = 5 \end{array} \right. \end{equation} 3. What family of trig function should you use in order to solve the following 1D heat equation defined on the interval $0 \leq x \leq 2$, and having the initial condition $u(x,0) = x$ for $0\leq x \leq 2$? Specify the function, $\sin(\omega x)$ or $\cos(\omega x)$, and the spatial frequencies $\omega$ as a function of an integer $n$. \begin{equation} \left\{ \begin{array}{lr} u_{t} = 4u_{xx}\\ u(0,t) = 0\\ u_{x}(2,t) = 0 \end{array} \right. \end{equation}


Tutorial Week 11 Solutions