Difference between revisions of "Tutorial Week 6"
From UBCMATH WIKI
(→Worksheet Questions) |
|||
Line 71: | Line 71: | ||
<!-- See history of "Tutorial Week 7" for solutions --> | <!-- See history of "Tutorial Week 7" for solutions --> | ||
+ | |||
+ | === Solutions === | ||
+ | <ol> | ||
+ | <li> ('''7 pts''')The characteristic equation has repeated roots $\lambda=3$ and the two linearly independent solutions are | ||
+ | $$\mathbf{x_1}(t)=\mathbf{v_1}e^{3 t},\quad \mathbf{x_2}(t)=(\mathbf{v_1}t+\mathbf{v_2})e^{3 t},$$ | ||
+ | where $\mathbf{v_1}$ and $\mathbf{v_2}$ satisfy | ||
+ | \begin{equation*} | ||
+ | \left( | ||
+ | \begin{array}{cc} | ||
+ | -1&-1\\ | ||
+ | 1&1\\ | ||
+ | \end{array} | ||
+ | \right)\mathbf{v_1}= | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 0\\ | ||
+ | 0 | ||
+ | \end{array} | ||
+ | \right) | ||
+ | \end{equation*} | ||
+ | and | ||
+ | \begin{equation*} | ||
+ | \left( | ||
+ | \begin{array}{cc} | ||
+ | -1&-1\\ | ||
+ | 1&1\\ | ||
+ | \end{array} | ||
+ | \right)\mathbf{v_2}= | ||
+ | \mathbf{v_1} | ||
+ | \end{equation*} | ||
+ | One form for the general solution is | ||
+ | \begin{equation*} | ||
+ | \mathbf{x}(t)=c_1 | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 1\\ | ||
+ | -1 | ||
+ | \end{array} | ||
+ | \right)e^{3 t}+c_2 | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | t\\ | ||
+ | -t-1 | ||
+ | \end{array} | ||
+ | \right)e^{3 t} | ||
+ | \end{equation*} | ||
+ | |||
+ | Points: '''1 pt''' for e-value, | ||
+ | '''1 pt''' for the e-vector ($\mathbf{v_1}$) equation, '''1 pt''' for calculating the e-vector, | ||
+ | '''1 pt''' for the generalized e-vector ($\mathbf{v_2}$) equation, '''1 pt''' for calculating the generalized e-vector ($\mathbf{v_2}$), | ||
+ | '''1 pt''' for assembling the $c_1$... part of the solution, '''1 pt''' for assembling the $c_2$... part of the solution. | ||
+ | </li> | ||
+ | |||
+ | <li> | ||
+ | <ol> | ||
+ | <li> | ||
+ | The two eigenvalues are $\lambda=0$ and $\lambda=-3$. The choice of the particular solution is not unique as long as it satisfies | ||
+ | \begin{equation*} | ||
+ | \left( | ||
+ | \begin{array}{cc} | ||
+ | 1&-2\\ | ||
+ | 2&-4\\ | ||
+ | \end{array} | ||
+ | \right)\mathbf{x_p}= | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | -1\\ | ||
+ | -2 | ||
+ | \end{array} | ||
+ | \right), | ||
+ | \end{equation*} | ||
+ | or in other words, | ||
+ | \begin{equation*} | ||
+ | |||
+ | \left(\begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array}\right)s+ | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | -1\\ | ||
+ | 0 | ||
+ | \end{array} | ||
+ | \right). | ||
+ | \end{equation*} | ||
+ | One of the general solution is | ||
+ | \begin{equation*} | ||
+ | \mathbf{x}(t)=c_1 | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array} | ||
+ | \right)+c_2 | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 1\\ | ||
+ | 2 | ||
+ | \end{array} | ||
+ | \right)e^{-3 t}+ | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 1/3\\ | ||
+ | 2/3 | ||
+ | \end{array} | ||
+ | \right) | ||
+ | \end{equation*}</li> | ||
+ | |||
+ | |||
+ | <li> $b_2=2b_1$. </li> | ||
+ | <li>The particular solution has the form | ||
+ | $\mathbf{x_p}=t\mathbf{v}+\mathbf{w}.$ | ||
+ | The solutions to $\mathbf{A} \mathbf{v} =0$ are | ||
+ | $ | ||
+ | \mathbf{v}=c | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $ | ||
+ | |||
+ | and $\mathbf{A} \mathbf{w}=\mathbf{v}-\mathbf{b}$ has to be $d | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 1\\ | ||
+ | 2 | ||
+ | \end{array} | ||
+ | \right), | ||
+ | $ | ||
+ | |||
+ | therefore \begin{equation*} | ||
+ | \mathbf{v}= | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array} | ||
+ | \right),\quad | ||
+ | \mathbf{w}= | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array} | ||
+ | \right)s+ | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | -1\\ | ||
+ | 0 | ||
+ | \end{array} | ||
+ | \right), | ||
+ | \end{equation*} | ||
+ | |||
+ | |||
+ | |||
+ | and therefore one form for the general solution is | ||
+ | |||
+ | \begin{equation*} | ||
+ | \mathbf{x}(t)=c_1 | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array} | ||
+ | \right)+c_2 | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 1\\ | ||
+ | 2 | ||
+ | \end{array} | ||
+ | \right)e^{-3 t}+t | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | 2\\ | ||
+ | 1 | ||
+ | \end{array} | ||
+ | \right) | ||
+ | +\left( | ||
+ | \begin{array}{c} | ||
+ | 1/3\\2/3\end{array}\right),\end{equation*} | ||
+ | |||
+ | which is just the one in part (a) plus | ||
+ | $\quad t \left(\begin{array}{c}2\\1\end{array}\right).$ | ||
+ | |||
+ | </li> | ||
+ | |||
+ | </ol> | ||
+ | Points: | ||
+ | (a) '''1 pt''' for characteristic equation, '''1 pt''' for eigenvalues, '''2 pts''' for eigenvectors (1 pt each), '''1 pt''' for a correct particular solution. | ||
+ | (b) '''1 pt''' for correct b equation. | ||
+ | (c) '''1 pt''' for getting $\mathbf{v}$, '''1 pt''' for getting $\mathbf{w}$, '''1 pt''' for writing the general solution. | ||
+ | </li> | ||
+ | </ol> |
Revision as of 18:08, 9 March 2017
Worksheet Questions
You can print the PDF. This worksheet relates to material from weeks 6 and 7.
- Find the general solution to the following linear system of differential equations \begin{equation} \mathbf{x}'= \left( \begin{array}{cc} 2&-1\\ 1&4 \end{array} \right)\mathbf{x} \end{equation}
- Consider the following system \begin{equation*} \mathbf{x}'= \left( \begin{array}{cc} 1&-2\\ 2&-4 \end{array} \right)\mathbf{x}+ \mathbf{b},\quad \text{where} \quad \mathbf{b}= \left( \begin{array}{c} b_1\\ b_2 \end{array} \right) \end{equation*}
- Determine the general solution when $b_1=1$ and $b_2=2$.
- In part (a), $b_1$ and $b_2$ were specially chosen in that the row reduced form of the matrix equation had a full row of zeros (including the RHS) and therefore a solution. Write down an equation for $b_1$ and $b_2$ that ensures this will happen.
- Now consider the case with $b_1=3$ and $b_2=3$. Because this $\mathbf{b}$ does not satisfy the
equation from part (b), a different form for your particular guess is needed. By analogy with second order systems, we guess $\mathbf{x_p} = t \mathbf{v}+\mathbf{w}$. Now we take the following steps to find out the general solution for this case:
- Plugging this $\mathbf{x_p} $ into the system of ODEs, we find that we must have $\mathbf{v} = t \mathbf{A} \mathbf{v}+ \mathbf{A} \mathbf{w} + \mathbf{b}$ for all $t$. This requires that $\mathbf{A} \mathbf{v}=0$ and $\mathbf{A} \mathbf{w}=\mathbf{v}-\mathbf{b};$
- $\mathbf{A} \mathbf{v}=0$ has a whole family of solutions. In fact , since $0$ is an eigenvalue of $\mathbf{A} $, $\mathbf{v}$ should be a corresponding eigenvector;
- Next consider the equation $\mathbf{A} \mathbf{w}=\mathbf{v}-\mathbf{b}$ which we must solve for $\mathbf{w}$. Notice that for any vector $\mathbf{w}$, $\mathbf{A} \mathbf{w}$ will always have a second component equal to twice its first component. Thus, to be able to solve $\mathbf{A} \mathbf{w}=\mathbf{v}-\mathbf{b}$ , we must make sure that $\mathbf{v}-\mathbf{b}$ has second component equal to twice its first component. Find the vector $\mathbf{v}$ from the family of solutions to $\mathbf{A} \mathbf{v}=0$ that does this. Then find $\mathbf{w}$ and write down the general solution for this case.
Solutions
- (7 pts)The characteristic equation has repeated roots $\lambda=3$ and the two linearly independent solutions are $$\mathbf{x_1}(t)=\mathbf{v_1}e^{3 t},\quad \mathbf{x_2}(t)=(\mathbf{v_1}t+\mathbf{v_2})e^{3 t},$$ where $\mathbf{v_1}$ and $\mathbf{v_2}$ satisfy \begin{equation*} \left( \begin{array}{cc} -1&-1\\ 1&1\\ \end{array} \right)\mathbf{v_1}= \left( \begin{array}{c} 0\\ 0 \end{array} \right) \end{equation*} and \begin{equation*} \left( \begin{array}{cc} -1&-1\\ 1&1\\ \end{array} \right)\mathbf{v_2}= \mathbf{v_1} \end{equation*} One form for the general solution is \begin{equation*} \mathbf{x}(t)=c_1 \left( \begin{array}{c} 1\\ -1 \end{array} \right)e^{3 t}+c_2 \left( \begin{array}{c} t\\ -t-1 \end{array} \right)e^{3 t} \end{equation*} Points: 1 pt for e-value, 1 pt for the e-vector ($\mathbf{v_1}$) equation, 1 pt for calculating the e-vector, 1 pt for the generalized e-vector ($\mathbf{v_2}$) equation, 1 pt for calculating the generalized e-vector ($\mathbf{v_2}$), 1 pt for assembling the $c_1$... part of the solution, 1 pt for assembling the $c_2$... part of the solution.
-
- The two eigenvalues are $\lambda=0$ and $\lambda=-3$. The choice of the particular solution is not unique as long as it satisfies \begin{equation*} \left( \begin{array}{cc} 1&-2\\ 2&-4\\ \end{array} \right)\mathbf{x_p}= \left( \begin{array}{c} -1\\ -2 \end{array} \right), \end{equation*} or in other words, \begin{equation*} \left(\begin{array}{c} 2\\ 1 \end{array}\right)s+ \left( \begin{array}{c} -1\\ 0 \end{array} \right). \end{equation*} One of the general solution is \begin{equation*} \mathbf{x}(t)=c_1 \left( \begin{array}{c} 2\\ 1 \end{array} \right)+c_2 \left( \begin{array}{c} 1\\ 2 \end{array} \right)e^{-3 t}+ \left( \begin{array}{c} 1/3\\ 2/3 \end{array} \right) \end{equation*}
- $b_2=2b_1$.
- The particular solution has the form $\mathbf{x_p}=t\mathbf{v}+\mathbf{w}.$ The solutions to $\mathbf{A} \mathbf{v} =0$ are $ \mathbf{v}=c \left( \begin{array}{c} 2\\ 1 \end{array} \right) $ and $\mathbf{A} \mathbf{w}=\mathbf{v}-\mathbf{b}$ has to be $d \left( \begin{array}{c} 1\\ 2 \end{array} \right), $ therefore \begin{equation*} \mathbf{v}= \left( \begin{array}{c} 2\\ 1 \end{array} \right),\quad \mathbf{w}= \left( \begin{array}{c} 2\\ 1 \end{array} \right)s+ \left( \begin{array}{c} -1\\ 0 \end{array} \right), \end{equation*} and therefore one form for the general solution is \begin{equation*} \mathbf{x}(t)=c_1 \left( \begin{array}{c} 2\\ 1 \end{array} \right)+c_2 \left( \begin{array}{c} 1\\ 2 \end{array} \right)e^{-3 t}+t \left( \begin{array}{c} 2\\ 1 \end{array} \right) +\left( \begin{array}{c} 1/3\\2/3\end{array}\right),\end{equation*} which is just the one in part (a) plus $\quad t \left(\begin{array}{c}2\\1\end{array}\right).$
Points: (a) 1 pt for characteristic equation, 1 pt for eigenvalues, 2 pts for eigenvectors (1 pt each), 1 pt for a correct particular solution. (b) 1 pt for correct b equation. (c) 1 pt for getting $\mathbf{v}$, 1 pt for getting $\mathbf{w}$, 1 pt for writing the general solution.