Difference between revisions of "Exam review questions"

From UBCMATH WIKI
Jump to: navigation, search
 
Line 8: Line 8:
 
   </ol>
 
   </ol>
 
   </li>
 
   </li>
 
+
<br><br><br><br><br><br>
 
   <li>Find the solution to the equation $y'=-x/y$ with the initial condition $y(0)=-2$.
 
   <li>Find the solution to the equation $y'=-x/y$ with the initial condition $y(0)=-2$.
 
   <ol>   
 
   <ol>   
Line 17: Line 17:
 
   </ol>
 
   </ol>
 
   </li>
 
   </li>
 
+
<br><br><br><br><br><br>
 
   <li> To solve the equation $y''+16\pi^2 y=f(t)$ using the Method of Undetermined Coefficients where $f(t)$ is a periodic function with period $T$ and $2T$ is not an integer, your guess at the particular solution should be
 
   <li> To solve the equation $y''+16\pi^2 y=f(t)$ using the Method of Undetermined Coefficients where $f(t)$ is a periodic function with period $T$ and $2T$ is not an integer, your guess at the particular solution should be
 
   <ol>   
 
   <ol>   
Line 26: Line 26:
 
   </ol>
 
   </ol>
 
   </li>
 
   </li>
 
+
<br><br><br><br><br><br>
 
   <li> The solution to the equation $y''+81y=f(t)$ where $f(t)$ is a switching function that continually goes on ($f(t)=1$) for one second and off ($f(t)=0$) for 1 second repeatedly. The solution consists of many sinusoidal functions but the one with largest amplitude has a period of
 
   <li> The solution to the equation $y''+81y=f(t)$ where $f(t)$ is a switching function that continually goes on ($f(t)=1$) for one second and off ($f(t)=0$) for 1 second repeatedly. The solution consists of many sinusoidal functions but the one with largest amplitude has a period of
 
   <ol>   
 
   <ol>   
Line 35: Line 35:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> Consider the matrix equation $x'=Ax$ where $A=\begin{pmatrix} a & 3 \\ 1 & a  \end{pmatrix}$. As the value of $a$ increases smoothly from a large negative number to a large positive number, the classification of the steady state...
 
   <li> Consider the matrix equation $x'=Ax$ where $A=\begin{pmatrix} a & 3 \\ 1 & a  \end{pmatrix}$. As the value of $a$ increases smoothly from a large negative number to a large positive number, the classification of the steady state...
 
   <ol>   
 
   <ol>   
Line 44: Line 44:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> The inverse transform of the function $\displaystyle Y(s)=\frac{s+3}{(s+1)^2+4}$ is
 
   <li> The inverse transform of the function $\displaystyle Y(s)=\frac{s+3}{(s+1)^2+4}$ is
 
   <ol>   
 
   <ol>   
Line 53: Line 53:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> Which of the following are the eigenfunctions for the diffusion equation $u_t=16u_{xx}$ with boundary conditions $u(0,t)=0$ and $u_x(4,t)=0$?
 
   <li> Which of the following are the eigenfunctions for the diffusion equation $u_t=16u_{xx}$ with boundary conditions $u(0,t)=0$ and $u_x(4,t)=0$?
 
   <ol>   
 
   <ol>   
Line 62: Line 62:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> Which of the following functions would be the correct choice for extending $f(x)$ in order to solve the diffusion equation on the interval $[0,1]$ with initial condition $f(x)=x$ and boundary conditions $u_x(0,t)=0$ and $u(1,t)=0$?
 
   <li> Which of the following functions would be the correct choice for extending $f(x)$ in order to solve the diffusion equation on the interval $[0,1]$ with initial condition $f(x)=x$ and boundary conditions $u_x(0,t)=0$ and $u(1,t)=0$?
[[File:extendedFunction1.png|thumb|a]]
+
<br>
[[File:extendedFunction2.png|thumb|b]]
+
(a) [[File:extendedFunction1.png|200px|a]] . . (b) [[File:extendedFunction2.png|200px|b]]<br><br>
[[File:extendedFunction3.png|thumb|c]]
+
(c) [[File:extendedFunction3.png|200px|c]] . . (d) [[File:extendedFunction4.png|200px|d]]
[[File:extendedFunction4.png|thumb|d]]
+
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> You add 5 grams of salt per minute through the left end ($x=0$) of a 3m pipe filled with water. The salt diffuses in the pipe with diffusion coefficient $D=2$ m$^2/$min. The right end of the pipe ($x=3$) is connected to an extremely large tank that starts with no salt in it. What is the steady state concentration profile through the pipe?
 
   <li> You add 5 grams of salt per minute through the left end ($x=0$) of a 3m pipe filled with water. The salt diffuses in the pipe with diffusion coefficient $D=2$ m$^2/$min. The right end of the pipe ($x=3$) is connected to an extremely large tank that starts with no salt in it. What is the steady state concentration profile through the pipe?
 
   <ol>   
 
   <ol>   
Line 78: Line 77:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> Choose the best option for a guess at the particular solution to the equation $y'''+2y'' = t + e^{-2t}$.
 
   <li> Choose the best option for a guess at the particular solution to the equation $y'''+2y'' = t + e^{-2t}$.
 
   <ol>   
 
   <ol>   
Line 87: Line 86:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> Books are taken out of a library at a constant rate. Books are returned to the library at a rate proportional to how many books are currently checked out from the library. On the 8th day of the semester, a large delivery of new books arrives at the library. Choose the best model for the number of books in the library $B(t)$ at time $t$ measured in days from the start of the semester.
 
   <li> Books are taken out of a library at a constant rate. Books are returned to the library at a rate proportional to how many books are currently checked out from the library. On the 8th day of the semester, a large delivery of new books arrives at the library. Choose the best model for the number of books in the library $B(t)$ at time $t$ measured in days from the start of the semester.
 
   <ol>   
 
   <ol>   
Line 96: Line 95:
 
   </ol>
 
   </ol>
 
   </li>  
 
   </li>  
 
+
<br><br><br><br><br><br>
 
   <li> Match the general solution to the vector field
 
   <li> Match the general solution to the vector field
 
   <ol>   
 
   <ol>   
Line 104: Line 103:
 
   </ol>   
 
   </ol>   
 
   </ol>   
 
   </ol>   
  [[File:vectorfield1.png|thumb|A|left]]
+
(i) [[File:vectorfield1.png|150px|A]] (ii) [[File:vectorfield3.png|150px|B]]
  [[File:vectorfield3.png|thumb|B|left]]
+
(iii) [[File:vectorfield4.png|150px|C]] (iv) [[File:vectorfield6.png|150px|D]]
  [[File:vectorfield4.png|thumb|C|left]]
+
  [[File:vectorfield6.png|thumb|D|left]]
+
 
   <ol>   
 
   <ol>   
 
   <li> (i) -- A; (ii) -- B.</li>
 
   <li> (i) -- A; (ii) -- B.</li>

Latest revision as of 13:01, 6 April 2017

  1. How many distinct possibilities are there for $\lim_{t\to\infty}x(t)$ where $x(t)$ solves the equation $x'-x=e^t$?
    1. 1
    2. 2
    3. 3
    4. 4






  2. Find the solution to the equation $y'=-x/y$ with the initial condition $y(0)=-2$.
    1. $y=\sqrt{-4-x^2}$
    2. $y=\sqrt{4-x^2}$
    3. $y=-\sqrt{4-x^2}$
    4. $x^2+y^2=4$






  3. To solve the equation $y''+16\pi^2 y=f(t)$ using the Method of Undetermined Coefficients where $f(t)$ is a periodic function with period $T$ and $2T$ is not an integer, your guess at the particular solution should be
    1. $y_p(t)=A \sin(4 \pi t) + B \cos(4\pi t)$
    2. $y_p(t)=A_0 + \sum_{n=1}^\infty a_n\cos\left(\frac{n \pi}{T} t\right) + \sum_{n=1}^\infty b_n\sin\left(\frac{n \pi}{T} t\right)$
    3. $y_p(t)=A_0 + \sum_{n=1}^\infty a_n\cos\left(\frac{2n \pi}{T} t\right) + \sum_{n=1}^\infty b_n\sin\left(\frac{2n \pi}{T} t\right)$
    4. $y_p(t)=A_0 + \sum_{n=1}^\infty a_n\cos\left(\frac{2n \pi}{T} t\right)$






  4. The solution to the equation $y''+81y=f(t)$ where $f(t)$ is a switching function that continually goes on ($f(t)=1$) for one second and off ($f(t)=0$) for 1 second repeatedly. The solution consists of many sinusoidal functions but the one with largest amplitude has a period of
    1. $\omega = \pi$
    2. $\omega = 2\pi$
    3. $\omega = 3\pi$
    4. $\omega = 4\pi$






  5. Consider the matrix equation $x'=Ax$ where $A=\begin{pmatrix} a & 3 \\ 1 & a \end{pmatrix}$. As the value of $a$ increases smoothly from a large negative number to a large positive number, the classification of the steady state...
    1. ... changes from a stable node to a stable spiral to an unstable spiral to an unstable node.
    2. ... is always a saddle.
    3. ... changes from a stable node to a saddle to an unstable node.
    4. ... changes from an unstable node to a saddle to a stable node.






  6. The inverse transform of the function $\displaystyle Y(s)=\frac{s+3}{(s+1)^2+4}$ is
    1. $\sqrt{2}e^{-t}\cos\left(2\left(t-\frac{\pi}{8}\right)\right)$
    2. $\sqrt{2}e^{-t}\cos\left(2\left(t-\frac{\pi}{4}\right)\right)$
    3. $\sqrt{2}e^{-t}\sin\left(2\left(t-\frac{\pi}{8}\right)\right)$
    4. $\sqrt{2}e^{-t}\cos\left(2\left(t+\frac{\pi}{4}\right)\right)$






  7. Which of the following are the eigenfunctions for the diffusion equation $u_t=16u_{xx}$ with boundary conditions $u(0,t)=0$ and $u_x(4,t)=0$?
    1. $\displaystyle u_n(x,t)=e^{-\frac{n^2\pi^2}{4}t} \sin\left( \frac{n\pi x}{8} \right)$ for $n$ even.
    2. $\displaystyle u_n(x,t)=e^{-n^2\pi^2t} \sin\left( \frac{n\pi x}{4} \right)$ for $n$ even.
    3. $\displaystyle u_n(x,t)=e^{-\frac{n^2\pi^2}{4}t} \sin\left( \frac{n\pi x}{8} \right)$ for $n$ odd.
    4. $\displaystyle u_n(x,t)=e^{-n^2\pi^2t} \sin\left( \frac{n\pi x}{4} \right)$ for $n$ odd.






  8. Which of the following functions would be the correct choice for extending $f(x)$ in order to solve the diffusion equation on the interval $[0,1]$ with initial condition $f(x)=x$ and boundary conditions $u_x(0,t)=0$ and $u(1,t)=0$?
    (a) a . . (b) b

    (c) c . . (d) d






  9. You add 5 grams of salt per minute through the left end ($x=0$) of a 3m pipe filled with water. The salt diffuses in the pipe with diffusion coefficient $D=2$ m$^2/$min. The right end of the pipe ($x=3$) is connected to an extremely large tank that starts with no salt in it. What is the steady state concentration profile through the pipe?
    1. $c_{ss}(x) = \frac{5}{2}x-\frac{15}{2}$
    2. $c_{ss}(x) = -\frac{2}{5}x$
    3. $c_{ss}(x) = -\frac{2}{5}x+\frac{6}{5}$
    4. $c_{ss}(x) = -\frac{5}{2}x+\frac{15}{2}$






  10. Choose the best option for a guess at the particular solution to the equation $y'''+2y'' = t + e^{-2t}$.
    1. $ y_p(t)=At+B+Cte^{-2t}$
    2. $ y_p(t)=At^2+Bt+Cte^{-2t}$
    3. $ y_p(t)=At^2+Bt+Ce^{-2t}$
    4. $ y_p(t)=At^3+Bt^2+Cte^{-2t}$






  11. Books are taken out of a library at a constant rate. Books are returned to the library at a rate proportional to how many books are currently checked out from the library. On the 8th day of the semester, a large delivery of new books arrives at the library. Choose the best model for the number of books in the library $B(t)$ at time $t$ measured in days from the start of the semester.
    1. $\frac{dB}{dt} = r(B_0-B) - c + a\delta(t-8)$
    2. $\frac{dB}{dt} = r(B_0-B) - c + au_8(t)$
    3. $\frac{dB}{dt} = c - rB + a\delta(t-8)$
    4. $\frac{dB}{dt} = c - rB + au_8(t)$






  12. Match the general solution to the vector field
      1. $\mathbf{y}(t) = c_1 e^{8t}\begin{pmatrix} 1 \\ 1 \end{pmatrix}+c_2 e^{4t}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$
      2. $\mathbf{y}(t) = c_1 e^{8t}\begin{pmatrix} 1 \\ 1 \end{pmatrix}+c_2 e^{-4t}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$

    (i) A (ii) B (iii) C (iv) D

    1. (i) -- A; (ii) -- B.
    2. (i) -- C; (ii) -- B.
    3. (i) -- A; (ii) -- D.
    4. (i) -- C; (ii) -- D.