# Final exam information

From UBCMATH WIKI

## Contents |

### Final exam date and time

The final exam will be held on **Dec 6 at 3:30pm**.

### What will the exam look like?

#### Content

- The material covered by the final exam includes material from
**Chapters 1-15**of the course notes. See the Course calendar for detailed readings. - The best way to study is to
**do lots of problems**. Questions similar to both the WeBWorK assignments and the OSH will appear on the final exam. For additional problems, look at the back of each chapter of course notes and the review problems in Chapter 16. - The difficulty of the exam will be similar to that of the midterms although you will probably find that you are not as pressed for time.
- There will be a slight emphasis on the material covered since Midterm 2 but the exam will definitely be cumulative.

#### Format

The final exam will consist of

- a number of
**multiple choice questions**, - some
**short answer problems**(show work, enter answer in a box) and - a few
**longer problems**.

Exams from previous years are available on the Math Department website. Hints and solutions to many of these are available on the Math Exam Resources page. Keep in mind that the material varies from year to year so some problems appearing on old exams might not be relevant this year. Similarly, some topics covered this year might not appear on any of the old exams.

### Final exam room assignments

Section | Building and room # |
---|---|

101 | SRC A-B-C |

102 | SRC A-B-C |

103 | SRC A-B-C |

104 | SRC A-B-C |

105 | SRC A-B-C |

106 | SRC A-B-C |

107 | SRC A-B-C |

### Exam formulae list

The following tables contain formulae that will be provided on the final exam should they be required. This list is based on what appeared in previous years - check here again closer to the exam to see if there are any changes.

Linear regression | ||
---|---|---|

Without intercept | $y=ax$ with $a=\frac{\sum_{i=0}^nx_iy_i}{\sum_{i=0}^nx_i^2}$ | |

With intercept | $y=ax+b$ with | |

$b=\bar{y}-a\bar{x}$ and $a=\frac{P_{avg}+\bar{x}\bar{y}}{x_{avg}^2-\bar{x}^2}$, | ||

where $\bar{x}=\frac{1}{n}\sum_{i=0}^n x_i$, $\bar{y}=\frac{1}{n}\sum_{i=0}^n y_i$, | ||

$P_{avg}=\frac{1}{n}\sum_{i=0}^n x_iy_i$, $x_{avg}^2=\frac{1}{n}\sum_{i=0}^n x_i^2$. |

Trig identities |
---|

$a^2=b^2+c^2-2bc\cos(\theta)$ |

$\sin(A+B) = \sin(A)\cos(B) + \cos(A)\sin(B)$ |

$\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$ |

Special triangles trig values | ||
---|---|---|

$\theta$ | $\sin(\theta)$ | $\cos(\theta)$ |

$\dfrac{\pi}{6}$ | $\dfrac{1}{2}$ | $\dfrac{\sqrt{3}}{2}$ |

$\dfrac{\pi}{4}$ | $\dfrac{\sqrt{2}}{2}$ | $\dfrac{\sqrt{2}}{2}$ |

$\dfrac{\pi}{3}$ | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{1}{2}$ |

Geometric formulae (volume, area) | ||
---|---|---|

Quantity | Formula | |

Volume of sphere | $\dfrac{4}{3} \pi r^3$ | |

Surface area of sphere | $4\pi r^2$ | |

Volume of cone | $\dfrac{1}{3} \pi r^2h$ | |

Surface area of cone | $\pi r s$ | |